• 제목/요약/키워드: Optical and electrical properties

검색결과 2,227건 처리시간 0.03초

F 농도 조절을 통한 AZO 박막의 광학적 전기적 특성 향상 (Improvement of Optical and Electrical Properties of AZO Thin Films by Controlling Fluorine Concentration)

  • 장수영;장준성;조은애;;김지훈;문종하;김진혁
    • 한국재료학회지
    • /
    • 제31권3호
    • /
    • pp.150-155
    • /
    • 2021
  • Zinc oxide (ZnO) based transparent conducting oxides (TCO) thin films, are used in many applications such as solar cells, flat panel displays, and LEDs due to their wide bandgap nature and excellent electrical properties. In the present work, fluorine and aluminium-doped ZnO targets are prepared and thin films are deposited on soda-lime glass substrate using a RF magnetron sputtering unit. The aluminium concentration is fixed at 2 wt%, and the fluorine concentration is adjusted between 0 to 2.0 wt% with five different concentrations, namely, Al2ZnO98(AZO), F0.5AZO97.5(FAZO1), F1AZO97(FAZO2), F1.5AZO96.5(FAZO3), and F2AZO96(FAZO4). Thin films are deposited with an RF power of 40 W and working pressure of 5 m Torr at 270 ℃. The morphological analysis performed for the thin film reveals that surface roughness decreases in FAZO1 and FAZO2 samples when doped with a small amount of fluorine. Further, optical and electrical properties measured for FAZO1 sample show average optical transmissions of over 89 % in the visible region and 82.5 % in the infrared region, followed by low resistivity and sheet resistance of 3.59 × 10-4 Ωcm and 5.52 Ω/sq, respectively. In future, these thin films with excellent optoelectronic properties can be used for thin-film solar cell and other optoelectronics applications.

RF Sputter 방법으로 제조한 ZnO:Ga 박막의 전기 및 광학적 특성 (ELECTRICAL AND OPTICAL PROPERTIES OF RF SPUTTERED AND Ga-DOPED ZINC OXIDE THIN FILMS)

  • 최병호;윤경훈;송진수;임호빈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.314-318
    • /
    • 1989
  • Thin films of undoped and Ga-doped zinc oxide have been prepared by rf sputtering. The films deposited on substrates, which have a columnar structure with the c-axis perpendicular to the substrate surface, consist of very small crystal grains (500-1000 ${\AA}$). Considering doping effects, the electrical resistivity of Ga-doped films decreased by an order of $10^3$ compared to undoped films and the optical transmission was above 80% in the visible range and the optical band gap widened as the Ga content increased.

  • PDF

Numerical Study of Enhanced Performance in InGaN Light-Emitting Diodes with Graded-composition AlGaInN Barriers

  • Kim, Su Jin;Kim, Tae Geun
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.16-21
    • /
    • 2013
  • In this paper, we report the effect of GaN/graded-composition AlGaInN/GaN quantum barriers in active regions on the electrical and optical properties of GaN-based vertical light emitting diodes (VLEDs). By modifying the aluminum composition profile within the AlGaInN quantum barrier, we have achieved improvements in the output power and the internal quantum efficiency (IQE) as compared to VLEDs using conventional GaN barriers. The forward voltages at 350 mA were calculated to be 3.5 and 4.0 V for VLEDs with GaN/graded-composition AlGaInN/GaN barriers and GaN barriers, respectively. The light-output power and IQE of VLEDs with GaN/graded-composition AlGaInN/GaN barriers were also increased by 4.3% and 9.51%, respectively, as compared to those with GaN barriers.

마그네트론 스퍼터를 이용한 Ar 가스 유량 조절에 따른 GZO의 특성 변화 (Effect of Ar Flow Ratio on the Characteristics of Ga-Doped ZnO Grown by RF Magnetron Sputtering)

  • 정영진;이승진;손창식
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.62.1-62.1
    • /
    • 2011
  • The structural, optical, and electrical properties of Ga-doped ZnO (GZO) thin films on glass substrates grown by radio-frequency(RF) magnetron sputtering were investigated. The flow ratio of Ar was varied as a deposition parameter for growing high-quality GZO thin films. The structural properties and surface morphologies of GZO were characterized by the X-ray diffraction. To analyze the optical properties of GZO, the optical absorbance was measured in the wavelength range of 300-1100 nm by using UV-VIS spectrophotometer. The optical transmittance, absorption coefficient, and optical bandgap energy of GZO thin films were calculated from the measured data. The crystallinity of GZO thin films is improved and the bandgap energy increases from 3.08 to 3.23eV with the increasing Ar flow ratio from 10 to 100 sccm. The average transmittance of the films is over 88% in the visible range. The lowest resistivity of the GZO is $6.215{\times}10^{-4}{\Omega}{\cdot}cm$ and the hall mobility increases with the increasing Ar flow ratio. We can optimize the characteristics of GZO as a transparent electrode for thin film solar cells by controlling Ar flow ratio during deposition process.

  • PDF

메로시아닌 색소의 J-회합체 ; 형성과 열.화학적인 처리에 의한 변화 (J-aggregates of Merocyanine Dye : formation and structural change on chemical and thermal treatments)

  • 신훈규;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1398-1400
    • /
    • 1998
  • The physical properties of the LB films with merocyanine dyes have been published and attract attention due to the possibility of molecular structure control. The evaluation of the thin films was focused for the purpose of molecular structure control. The molecular structure in the case of the thin films with dyes can be examine by optical absorption spectra measurements. In the case of optical absorption spectra of the LB films by the heat treatment at $70^{\circ}C$ in the air, both of the shifted absorption bands decay and a monomer absorption peak of about 530 nm appears instead. And, the formation and dissociation of J-aggregates, anisotropic behavior was no longer observed in the heat treated merocyanine dyes LB films. In the results, study of the merocyanine dyes LB films using optical absorption spectra would an interesting problem of absorption peak shifts and mixed components.

  • PDF

Process effects on morphology, electrical and optical properties of a-InGaZnO thin films by Magnetic Field Shielded Sputtering

  • 이동혁;김경덕;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.217-217
    • /
    • 2016
  • The amorphous InGaZnO (a-IGZO) is widely accepted as a promising channel material for thin-film transistor (TFT) applications owing to their outstanding electrical properties [1, 2]. However, a-IGZO TFTs have still suffered from their bias instability with illumination [1-4]. Up to now, many researchers have studied the sub-gap density of states (DOS) as the root cause of instability. It is well known that defect states can influence on the performances and stabilities of a-IGZO TFTs. The defects states should be closely related with the deposition condition, including sputtering power, and pressure. Nevertheless, it has not been reported how these defects are created during conventional RF magnetron sputtering. In general, during conventional RF magnetron sputtering process, negative oxygen ions (NOIs) can be generated by electron attachment in oxygen atom near target surface and then accelerated up to few hundreds eV by a self-bias; at this time, the high energy bombardment of NOIs induce defects in oxide thin films. Recently, we have reported that the properties of IGZO thin films are strongly related with effects of NOIs which are generated during the sputtering process [5]. From our previous results, the electrical characteristics and the chemical bonding states of a-IGZO thin films were depended with the bombardment energy of NOIs. And also, we suggest that the deep sub-gap states in a-IGZO as well as thin film properties would be influenced by the bombardment of high energetic NOIs during the sputtering process.In this study, we will introduce our novel technology named as Magnetic Field Shielded Sputtering (MFSS) process to prevent the NOIs bombardment effects and present how much to be improved the properties of a-IGZO thin film by this new deposition method. We deposited a-IGZO thin films by MFSS on SiO2/p-Si and glass substrate at various process conditions, after which we investigated the morphology, optical and electrical properties of the a-IGZO thin films.

  • PDF

스퍼터링으로 퇴적시킨 바나듐 산화막의 구조적, 광학적 특성 (Structural and optical properties of sputtered vanadium pentoxide thin films)

  • 최복길;신규호;정상진;최창규;김성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.746-748
    • /
    • 1998
  • Thin films of vanadium pentoxide ($V_{2}O_{5}$) have been deposited by r.f. magnetron sputtering from $V_{2}O_{5}$ target in gas mixture of argon and oxygen. Crystal structure, surface morphology, surface composition and optical properties of films prepared under different substrates are characterized through XRD, SEM, AES, XPS and optical absorption measurements. The films prepared below $100^{\circ}C$ are amorphous, and those prepared above $200^{\circ}C$ are polycrystalline. Thermally Induced oxidation of films into higher oxide has been observed with increasing substrate temperature. Vanadium oxide films show two optical absorption bands indicating the presence of direct and indirect transitions.

  • PDF

ZnAl$_2$O$_4$ 형광체의 광발광 특성 (The Photoluminescent Properties of ZnAl$_2$O$_4$ Phosphors)

  • 강병모;정운조;조재절;송호준;박계춘;유용택
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1997년도 추계학술대회 논문집
    • /
    • pp.211-216
    • /
    • 1997
  • ZnO and A1$_2$O$_3$ powders were mixed in 1 : 1 mole ratio and ball-milled with ethanol for 3 h. After the pressing process, the mixtures were sintered at $700^{\circ}C$~130$0^{\circ}C$ for 5 h in air to form ZnA1$_2$O$_4$. Structural properties were analyzed by X-ray diffraction patterns ; optical properties by absorption spectra with UV-VIS-H[R Spectrophotometer ; microstructural properties by SEM ; photoluminescent properties by using PL Measuring System. In result, ZnAl$_2$O$_4$ phosphor is crystallized at 110$0^{\circ}C$ and optical bandgap is calculated at 4.65 eV. PL spectrums were shifted to longer wavelengths with increasing temperature and was appeared around 780nm at 130$0^{\circ}C$ . Additionally, the peak intensity was veil strong at 80$0^{\circ}C$ and was declined with increasing temperature.

  • PDF

Properties of Indium Tin Oxide Transparent Conductive Thin Films at Various Substrate and Annealing Temperature

  • Jeong, Woon-Jo;Kim, Seong-Ku;Kim, Jong-Uk;Park, Gye-Choon;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • 제3권1호
    • /
    • pp.18-22
    • /
    • 2002
  • ITO thin films with thickness of 3000 $\AA$ were fabricated by rf magnetron sputtering system with a 10 mol % SnO$_2$-90 mol % In$_2$O$_3$target at various substrate temperature and annealing temperature in air. And we investigated structural, electrical and optical characteristics of them. It's resistivity, carrier concentration and Hall mobility was 2$\times$10$\^$-4/ Ωcm, 7$\times$10$\^$20/∼ 9$\times$10$\^$20/ cm$\^$-3/ and 21∼23 cm$^2$/V$.$sec respectively. And it's optical transmittance and energy band gap was above 85 % in the visible range and 3.53 eV respectively.

스퍼터된 바나듐 산화막의 구조적 특성에 미치는 진공 어닐링의 효과 (Effects of Vacuum Annealing on the Structural Properties of Sputtered Vanadium Oxide Thin Films)

  • 황인수;최복길;최창규;권광호;김성진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 춘계학술대회 논문집 센서 박막재료 반도체재료 기술교육
    • /
    • pp.70-73
    • /
    • 2002
  • Thin films of vanadium oxide($VO_{x}$) have been deposited by r.f. magnetron sputtering from $V_{2}O_{5}$ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio of 0% and 8% is adopted. Crystal structure, chemical composition, molecular structure and optical properties of films sputter-deposited under different oxygen gas pressures and in-situ annealed in vacuum at $400^{\circ}C$ for 1h and 4h are characterized through XRD. RBS, FTlR and optical absorption measurements. The films as-deposited are amorphous and those annealed for time longer than 4h are polycrystalline. $V_{2}O_{5}$ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric $V_{2}O_{5}$. When annealed at $400^{\circ}C$, the as-deposited films are reduced to a lower oxide. It is observed that the oxygen atoms located on the V-O plane of $V_{2}O_{5}$ layer participate more readily in the oxidation and reduction process. The optical transmission of the films annealed in vacuum decreases considerably than the as-deposited films and the optical absorption of all the films increases rapidly between 400 and 550nm.

  • PDF