• Title/Summary/Keyword: Optical and electrical properties

Search Result 2,227, Processing Time 0.033 seconds

Optical and electrical properties of organic light-emitting diodes with ITO and AZO base various anode configurations

  • An, Jin-Hyung;Kim, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.1079-1081
    • /
    • 2006
  • Optical and electrical properties of various transparent conducting oxides (ITO, AZO, ITO/Ag/ITO, AZO/Ag/AZO) were investigated for anode of OLED display. ITO/Ag/ITO multi-layer anode has much better electrical and optical characteristics than other films, and OLED on that anode showed lower threshold voltage and better luminescence.

  • PDF

Luminescence properties of ZnO thin films depending on the variation of the film thickness (ZnO 박막의 두께변화에 따른 광학적 특성변화 연구)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF

Electrical and Optical Properties of SnO$_2$: F Thin Films by Reactive DC Magnetron Sputtering Method (반응성 DC 마그네트론 스퍼터법에 의한 SnO$_2$ : F 박막의 전기광학적 특성)

  • 정영호;김영진;신재혁;송국현;신성호;박정일;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.2
    • /
    • pp.125-133
    • /
    • 1999
  • Fluorine-doped $SnO_2$ thin films were deposited on soda-lime glass substrates by reactive DC magnetron sputtering method. Crystallinity as well as electrical and optical properties of $SnO_2$ : F thin film were investigated as the variations of deposition conditions such as substrate temperature, DC Power, $O_2$ gas pressure, $SF_6$ gas pressure. $SnO_2$ : F thin film deposited with 5% $SF_6$ gas pressure showed electrical resistivities of $2.5\times10^{-3}$cm with the average optical transparency (about 80%) These electrical and optical properties were found to be related to the crystallinity of $SnO_2$ : F thin films.

  • PDF

Electro-optical Properties of Twisted Nematic Liquid Crystal Cell with Silver Nanowire Network Electrodes

  • Jang, Kyeong-Wook;Han, Jeong-Min;Shon, Jin-Geun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.284-287
    • /
    • 2017
  • This paper introduces liquid crystal (LC) alignment and its electro-optical properties in the LC cells with silver nanowire (AgNW) networks. The AgNW network was used as an electrode of LC cell as a substitute for an indium-tin-oxide (ITO) film. LC alignment characteristics in the LC cell using AgNW networks, which have two different sheet resistances of $60{\Omega}/m^2$ and $80{\Omega}/m^2$, were observed. The LC alignment characteristics including pretilt angle, LC alignment state, and thermal stability are similar irrespective of sheet resistance of AgNW network. However, twisted-nematic (TN)-LC cell normally operated when using AgNW network with sheet resistance of $80{\Omega}/m^2$. Electrooptical properties of TN-LC cell exhibited competitive performance compared to those of TN-LC cell based on conventional ITO electrode, which allow new approaches to replace conventional ITO electrode in display technology.

Influence of Ag Thickness on Electrical and Optical Properties of AZO/Ag/AZO Multi-layer Thin Films by RF Magnetron Sputtering (RF magnetron sputter에 의해 제조된 AZO/Ag/AZO 다층박막의 Ag 두께가 전기적 광학적 특성에 미치는 영향)

  • An Jin-Hyung;Kang Tea-Won;Kim Dong-Won;Kim Sang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.9-12
    • /
    • 2006
  • Al-doped ZnO(AZO)/Ag/AZO multi-layer films deposited on PET substrate by RF magnetron sputtering have a much better electrical properties than Al-doped ZnO single-layer films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the optimum thickness of Ag layers was determined to be $112{\AA}$ for high optical transmittance and good electrical conductivity. With about $1800{\AA}$ thick AZO films, the multi-layer showed a high optical transmittance in the visible range of the spectrum. The electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. A high quality transparent electrode, having a resistance as low as $6\;W/{\square}$ and a high optical transmittance of 87% at 550 nm, was obtained by controlling Ag deposition parameters.

A Study of Physical and Optical Properties of GaN grown using In-situ SiN Mask by MOCVD (In-situ SiN Mask를 이용하여 성장한 GaN 박막의 물성적, 광학적 특성 연구)

  • Kim, Deok-Kyu;Jeong, Jong-Yub;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.121-124
    • /
    • 2004
  • We have grown GaN layers with in-situ SiN mask by metal organic chemical vapor deposition(MOCVD) and study the physical properties of the GaN layer. We have also investigate the effect of the SiN mask on its optical property. By inserting a SiN mask, (102) the full width at half maximum(FWHM) decreased from 480 arcsec to 409 arcsec. The PL intensity of GaN with SiN mask improved 2 times to that without SiN mask. We have thus shown that the SiN mask improved significantly the physical and optical properties of the GgN layer.

  • PDF

Electrical and Optical properties of ZnO:Al films with Heat treatment (열처리 조건에 따른 ZnO:Al 박막의 전기적 광학적 특성)

  • Lee, Dong-Jin;Lee, Jae-Hyeong;Sun, Ho-Jung;Lee, Jong-In;Jong, Dong-Su;Song, Jun-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.133-134
    • /
    • 2007
  • We have studied the structural and electrical, optical properties of Al doped ZnO(AW) thin films which were fabricated by If reactive magnetron sputtering method with various heat treatment conditions. The heat temperatures of specimen fabrication were comning 7059 glass is $200{\sim}500^{\circ}C$ and Polyimide films are $200{\sim}350^{\circ}C$ respectively. The variations of the electrical and optical properties with heat treatment temperature and ambient were studied.

  • PDF

The Optical Properties of Amorphous Se Films in the Visible Range (비정질 Se박막의 가시광선영역 광특성)

  • 박창엽;김영호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.11
    • /
    • pp.141-145
    • /
    • 1982
  • Optical absorption properties of an orphous Se film due to interband electronic transitions are observed in the visible range by varying the folm thickness. Amorphous Se films were prepared by evaporation method. As the experimental results, it is found that optical energy gap is around 2.07(e V), and the optical constants depend on the film thickness, evaporation-deposition conditions, and incident photon energy.

  • PDF

Dielectric and Electro-Optical Properties of Ceramic Nanoparticles Doped Liquid Crystals

  • Porov, Preeti;Chandel, Vishal Singh;Manohar, Rajiv
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.69-78
    • /
    • 2016
  • Liquid crystals are important materials because of their applications in display technology and many other scientific applications. Different mixtures of liquid crystals and their doped samples have gained interest because a single liquid crystal compound cannot fulfill all the required parameters for the display application. The doping can be accomplished with dyes, polymers, or composite nanoparticles among other substance. The addition of nanoparticles can modify the physical properties of the host liquid crystal and enhances the performance of electro-optical devices. The present study is focused on investigations of possible changes in dielectric and electro optical properties of liquid crystals caused by doping with ceramic nanoparticles. Including smaller nanoparticles were found to be better candidates for use in suppressing the unwanted ion effects in liquid crystal displays.

Electronic, Optical and Electrical Properties of Nickel Oxide Thin Films Grown by RF Magnetron Sputtering

  • Park, Chanae;Kim, Juhwan;Lee, Kangil;Oh, Suhk Kun;Kang, Hee Jae;Park, Nam Seok
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.72-76
    • /
    • 2015
  • Nickel oxide (NiO) thin films were grown on soda-lime glass substrates by RF magnetron sputtering method at room temperature (RT), and they were post-annealed at the temperatures of $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$ and $400^{\circ}C$ for 30 minutes in vacuum. The electronic structure, optical and electrical properties of NiO thin films were investigated using X-ray photoelectron spectroscopy (XPS), reflection electron energy spectroscopy (REELS), UV-spectrometer and Hall Effect measurements, respectively. XPS results showed that the NiO thin films grown at RT and post annealed at temperatures below $300^{\circ}C$ had the NiO phase, but, at $400^{\circ}C$, the nickel metal phase became dominant. The band gaps of NiO thin films post annealed at temperatures below $300^{\circ}C$ were about 3.7 eV, but that at $400^{\circ}C$ should not be measured clearly because of the dominance of Ni metal phase. The NiO thin films post-annealed at temperatures below $300^{\circ}C$ showed p-type conductivity with low electrical resistivity and high optical transmittance of 80% in the visible light region, but that post-annealed at $400^{\circ}C$ showed n-type semiconductor properties, and the average transmittance in the visible light region was less than 42%. Our results demonstrate that the post-annealing plays a crucial role in enhancing the electrical and optical properties of NiO thin films.