• Title/Summary/Keyword: Optical amplifier

Search Result 439, Processing Time 0.029 seconds

Impact of the Gain-saturation Characteristic of Erbium-doped Fiber Amplifiers on Suppression of Atmospheric-turbulence-induced Optical Scintillation in a Terrestrial Free-space Optical Communication System

  • Jeong, Yoo Seok;Kim, Chul Han
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • We have evaluated the suppression effect of atmospheric-turbulence-induced optical scintillation in terrestrial free-space optical (FSO) communication systems using a gain-saturated erbium-doped fiber amplifier (EDFA). The variation of EDFA output signal power has been measured with different amounts of gain saturation and modulation indices of the optical input signal. From the measured results, we have found that the peak-to-peak power variation was decreased drastically below 2 kHz of modulation frequency, in both 3-dB and 6-dB gain compression cases. Then, the power spectral density (PSD) of optical scintillation has been calculated with Butterworth-type transfer function. In the calculation, different levels of atmospheric-turbulence-induced optical scintillation have been taken into account with different values of the Butterworth cut-off frequency. Finally, the suppression effect of optical scintillation has been estimated with the measured frequency response of the EDFA and the calculated PSD of the optical scintillation. From our estimated results, the atmospheric-turbulence-induced optical scintillation could be suppressed efficiently, as long as the EDFA were operated in a deeply gain-saturated region.

A Design and Implementation of 4×10 Gb/s Transimpedance Amplifiers (TIA) Array for TWDM-PON (TWDM-PON 응용을 위한 4×10 Gb/s Transimpedance Amplifier 어레이 설계 및 구현)

  • Yang, Choong-Reol;Lee, Kang-Yoon;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.7
    • /
    • pp.440-448
    • /
    • 2014
  • A $4{\times}10$ Gb/s Transimpedance Amplifier (TIA) array is implemented in $0.13{\mu}m$ CMOS process technology, which will be used in the receiver of TWDM-PON system. A technology for bandwidth enhancement of a given $4{\times}10$ Gb/s TIA presented under inductor peaking technology and a single 1.2V power supply based low voltage design technology. It achieves 3 dB bandwidth of 7 GHz in the presence of a 0.5 pF photodiode capacitance. The trans-resistance gain is $50dB{\Omega}$, while 48 mW/ 1channel from a 1.2 V supply. The input sensitivity of the TIA is -27 dBm. The chip size is $1.9mm{\times}2.2mm$.

A $120-dB{\Omega}$ 8-Gb/s CMOS Optical Receiver Using Analog Adaptive Equalizer (아날로그 어댑티브 이퀄라이저를 이용한 $120-dB{\Omega}$ 8-Gb/s CMOS 광 수신기)

  • Lee, Dong-Myung;Choi, Boo-Young;Han, Jung-Won;Han, Gun-Hee;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.119-124
    • /
    • 2008
  • Transimpedance amplifier(TIA) is the most significant element to determine the performance of the optical receiver, and thus the TIA must satisfy tile design requirements of high gain and wide bandwidth. In f)is paper, we propose a novel single chip optical receiver that exploits an analog adaptive equalizer and a limiting amplifier to enhance the gain and bandwidth performance, respectively. The proposed optical receiver is designed by using a $0.13{\mu}m$ CMOS process and its post-layout simulations show $120dB{\Omgea}$ transimpedance gain and 5.88GHz bandwidth. The chip core occupies the area of $0.088mm^2$, due to utilizing the negative impedance converter circuit rather than using on-chip passive inductors.

A 150-Mb/s CMOS Monolithic Optical Receiver for Plastic Optical Fiber Link

  • Park, Kang-Yeob;Oh, Won-Seok;Ham, Kyung-Sun;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2012
  • This paper describes a 150-Mb/s monolithic optical receiver for plastic optical fiber link using a standard CMOS technology. The receiver integrates a photodiode using an N-well/P-substrate junction, a pre amplifier, a post amplifier, and an output driver. The size, PN-junction type, and the number of metal fingers of the photodiode are optimized to meet the link requirements. The N-well/P-substrate photodiode has a 200-${\mu}m$ by 200-${\mu}m$ optical window, 0.1-A/W responsivity, 7.6-pF junction capacitance and 113-MHz bandwidth. The monolithic receiver can successfully convert 150-Mb/s optical signal into digital data through up to 30-m plastic optical fiber link with -10.4 dBm of optical sensitivity. The receiver occupies 0.56-$mm^2$ area including electrostatic discharge protection diodes and bonding pads. To reduce unnecessary power consumption when the light is not over threshold or not modulating, a simple light detector and a signal detector are introduced. In active mode, the receiver core consumes 5.8-mA DC currents at 150-Mb/s data rate from a single 3.3 V supply, while consumes only $120{\mu}W$ in the sleep mode.