• Title/Summary/Keyword: Optical Zoom

Search Result 127, Processing Time 0.023 seconds

ZOOM-IN - Zemax User Conference 2017 및 대학생 설계 경진대회 개최

  • 한국광학기기산업협회
    • The Optical Journal
    • /
    • s.171
    • /
    • pp.10-12
    • /
    • 2017
  • (주)래디언트솔루션(대표이사 김지형)이 지난 7월 20일 서울 상암동 중소기업 DMC타워에서 국내 광학전문가들과 국내 기업체 약 80여명의 Zemax 사용자들을 초청해 'Zemax User Conference 2017'를 개최함과 동시에 'Zemax OpticStudio 대학생 설계 경진대회'를 진행했다.

  • PDF

ZOOM-IN - (주)싸이펨 민제홍 대표이사 취임 인터뷰

  • 한국광학기기산업협회
    • The Optical Journal
    • /
    • s.177
    • /
    • pp.28-29
    • /
    • 2020
  • 미국 Synopsys의 광학 설계 분석 소프트웨어의 국내 판매와 기술지원, 교육, 광학설계 컨설팅 서비스와 기하광학에서 파동광학까지 폭넓게 아우르는며, LightTools(조명), CODE V(렌즈), LucidShape(자동차 조명), RSoft(나노 사이즈 광학구조) 네 가지 분야 소프트웨어와 광학 설계 솔루션을 보유한 광학 전문기업 (주)싸이펨이 지난 1월 민제홍 대표이사가 새로 취임하며 변화를 꾀하고 있다.

  • PDF

Analysis and test of athermalizaion for 20:1 zoom thermal imaging system (20:1 줌 열영상 장비 비열화 분석 및 시험)

  • 김현숙;최세철;최세철;이국환;박용찬;김현규
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.4
    • /
    • pp.281-288
    • /
    • 2001
  • In this study we carried out athermalization analysis and tests to meet the required optical performance for thennal imaging systems even if the systems were operating over a wide temperature range. By using optical design programs such as Code- V and SIGMA2100, the simulation for athermalization was done with FPA thermal imaging system. In the athermalization test putting the thermal imaging system and collimator into a temperature chamber, the images depending on the temperature were recorded on video tape. In particular, the zoom thermal imaging system with two dimensional array detector was tested to check the result of the athermalization simulation. As a result, it was proved to meet the required optical performance for the thermal imaging system within $-32-+50^{\circ}C$ temperature range. range.

  • PDF

Design and Performance Verification of a LWIR Zoom Camera for Drones

  • Kwang-Woo Park;Jonghwa Choi;Jian Kang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.354-361
    • /
    • 2023
  • We present the optical design and experimental verification of resolving performance of a 3× long wavelength infrared (LWIR) zoom camera for drones. The effective focal length of the system varies from 24.5 mm at the wide angle position to 75.1 mm at the telephoto position. The design specifications of the system were derived from ground resolved distance (GRD) to recognize 3 m × 6 m target at a distance of 1 km, at the telephoto position. To satisfy the system requirement, the aperture (f-number) of the system is taken as F/1.6 and the final modulation transfer function (MTF) should be higher than 0.1 (10%). The measured MTF in the laboratory was 0.127 (12.7%), exceeds the system requirement. Outdoor targets were used to verify the comprehensive performance of the system. The system resolved 4-bar targets corresponding to the spatial resolution at the distance of 1 km, 1.4 km and 2 km.

Design of Two-group Zoom Lens System with Wide Angle of View Using Global Structure Function (전역구조함수를 사용한 광각 2군 줌 렌즈의 설계)

  • Kwon, Hyuk-Joon;Rim, Cheon-Seog
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.319-327
    • /
    • 2009
  • We introduce a new design technique by treating a two-group zoom lens system with a wide angle of view. First, the concept of the global optimization is introduced in the initial design stage, and from this, the global design technique is completed by analyzing and summarizing large quantities of modern design data. That is, we define the global structure function to achieve a new conceptual design technique for global optimization. And the function is put in a simple form by referring lots of patent data, manipulated with other algebraic equations, and solved finally such that we obtain the global solution region. The global solution region corresponds to the global optimization and suggests insightful systematized directions for the design of two-group zoom lens systems. These directions are attractive compared to global optimization.

Focus Adjustment Method with Statistical Analysis for an Interchangeable Zoom Lens with Symmetric Error Factors (대칭성 공차를 갖는 교환렌즈용 줌 렌즈의 핀트 조정법과 통계적 해석)

  • Ryu, J.M.;Jo, J.H.;Kang, G.M.;Lee, H.J.;Yoneyama, Suji
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.5
    • /
    • pp.230-238
    • /
    • 2011
  • There are many types of interchangeable zoom lens in the digital single lens reflex camera and the compact digital still camera system in order to meet various specifications such as the field angle. Thus special cases for which the focus adjustment using only an auto-focus group is not available in the focal point correction (that is, the focus adjustment) of both wide and tele-zoom positions are sometimes generated. In order to make each BFL(back focal length, BFL) coincide at wide and tele-zoom positions with each designed BFL, focus adjustment processes must be performed at least in these two points within the zoom lens system. In this paper, we propose a method of focus adjustment by using the concept of focus sensitivity, and we calculate a limit on focus adjustment distance by means of statistical analysis.

Calculation of Longitudinal Aberrations in Decentered Optical System with Non-symmetrical Elements (비대칭 오차요인이 있는 편심 광학계에서의 종수차 계산)

  • Ryu, Jae-Myung;Jo, Jae-Heung;Kang, Geon-Mo;Lee, Hae-Jin;Yoneyama, Suji
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.4
    • /
    • pp.151-160
    • /
    • 2010
  • When the optical image stabilization is implemented by moving one of the lens groups in a zoom system, decentration should be considered in the optical design process. Although it is partially possible to calibrate optical performances in an optical system with non-symmetrical elements by using a lot of commercial software, the results of calibrating longitudinal aberrations have some calibration errors because of the lack of precise consideration of decentered optical systems. In particular, the amount of distortion in paraxial ray tracing is different from the experimental value because paraxial ray tracing in the optical system is not useful. In this paper, in order to solve this problem being from various commercial lens design software, the set of equations of paraxial ray tracing in a zoom lens system with the non-symmetrical elements like decentration or tilt are theoretically induced. Then, the methods to calibrate the equations of longitudinal aberrations by using these equations in a non-symmetrical optical system are presented. The method of calibrating longitudinal aberrations can in practice be used to correct hand shaking effects in a zoom lens system.

Design of Cover Layer Incident Dual-Layer Near-Field Recording Optics with Hemispherical SIL (반구형 SIL을 이용한 미디어 내부 이층 근접장 광 기록계의 설계)

  • Kim Wan-Chin;Choi Hyun;Song Taesun;Park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.4-11
    • /
    • 2005
  • In this paper, we propose novel optics design for media inside near-field recording (NFR) using hemispherical solid immersion lens (HMS). To obtain strong advantage of data protection and high data capacity simultaneously, HMS based near field optics using aplanatic position of super hemisphere is designed. In this design, to improve small optical tolerance of this aplanatic position, additional aspheric lens surface is added on top of the HMS and it is combined with zoom optics which composed of two single lenses having low numerical aperture (NA). Also, to compensate chromatic aberration which happens seriously in optics using blue laser diode, diffractive optical element is used. Using zoom optics, additional aspheric lens surface, and diffractive optical element together, wavefront aberration and chromatic aberration are effectively reduced in broad range of cover layer thickness and wavelength variation. In addition, In this paper, effect of gap induced aberration is investigated by analyzing different behavior of each TM and TE wave for designed media inside dual-layer NFR optics.

  • PDF