• Title/Summary/Keyword: Optical XOR logic operation

Search Result 8, Processing Time 0.018 seconds

Design and Demonstration of All-Optical XOR, AND, OR Gate in Single Format by Using Semiconductor Optical Amplifiers (반도체 광증폭기를 이용한 다기능 전광 논리 소자의 설계 및 측정)

  • Son, Chang-Wan;Yoon, Tae-Hoon;Kim, Sang-Hun;Jhon, Young-Min;Byun, Yung-Tae;Lee, Seok;Woo, Deok-Ha;Kim, Sun-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.6
    • /
    • pp.564-568
    • /
    • 2006
  • Using the cross-gain modulation (XGM) characteristics of semiconductor optical amplifiers (SOAs), multi-functional all-optical logic gates, including XOR, AND, and OR gates are successfully simulated and demonstrated at 10Gbit/s. A VPI component maker^TM simulation tool is used for the simulation of multi-functional all-optical logic gates and the10 Cbit/s input signal is made by a mode-locked fiber ring laser. A multi-quantum well (MQW) SOA is used for the simulation and demonstration of the all-optical logic system. Our suggested system is composed of three MQW SOAs, SOA-1 and SOA-2 for XOR logic operation and SOA-2 and SOA-3 for AND logic operation. By the addition of two output signals XOR and AND, all-optical OR logic can be obtained.

Optical Implementation of Triple DES Algorithm Based on Dual XOR Logic Operations

  • Jeon, Seok Hee;Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.362-370
    • /
    • 2013
  • In this paper, we propose a novel optical implementation of a 3DES algorithm based on dual XOR logic operations for a cryptographic system. In the schematic architecture, the optical 3DES system consists of dual XOR logic operations, where XOR logic operation is implemented by using a free-space interconnected optical logic gate method. The main point in the proposed 3DES method is to make a higher secure cryptosystem, which is acquired by encrypting an individual private key separately, and this encrypted private key is used to decrypt the plain text from the cipher text. Schematically, the proposed optical configuration of this cryptosystem can be used for the decryption process as well. The major advantage of this optical method is that vast 2-D data can be processed in parallel very quickly regardless of data size. The proposed scheme can be applied to watermark authentication and can also be applied to the OTP encryption if every different private key is created and used for encryption only once. When a security key has data of $512{\times}256$ pixels in size, our proposed method performs 2,048 DES blocks or 1,024 3DES blocks cipher in this paper. Besides, because the key length is equal to $512{\times}256$ bits, $2^{512{\times}256}$ attempts are required to find the correct key. Numerical simulations show the results to be carried out encryption and decryption successfully with the proposed 3DES algorithm.

All-Optical Composite Logic Gates with XOR, NOR, OR, and NAND Functions using Parallel SOA-MZI Structures (병렬 SOA-MZI 구조들을 이용한 XOR, NOR, OR 그리고 NAND 기능들을 가진 전광 복합 논리 게이트들)

  • Kim Joo-Youp;Han Sang-Kook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.1 s.343
    • /
    • pp.13-16
    • /
    • 2006
  • We have proposed and experimentally demonstrated the all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures to make it possible to simultaneously perform various logical functions. The proposed scheme is robust and feasible for high speed all-optical logic operation with high ER.

Optical System Implementation of OFB Block Encryption Algorithm (OFB 블록 암호화 알고리즘의 광학적 시스템 구현)

  • Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.328-334
    • /
    • 2014
  • This paper proposes an optical encryption and decryption system for OFB(Output Feedback Block) encryption algorithm. The proposed scheme uses a dual-encoding technique in order to implement optical XOR logic operation. Also, the proposed method provides more enhanced security strength than the conventional electronic OFB method due to the huge security key with 2-dimensional array. Finally, computer simulation results of encryption and decryption are shown to verify the proposed method, and hence the proposed method makes it possible to implement more effective and stronger optical block encryption system with high-speed performance and the benefits of parallelism.

All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier

  • Kaur, Sanmukh;Kaler, Rajinder-Singh;Kamal, Tara-Singh
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.222-227
    • /
    • 2015
  • We propose a new and potentially integrable scheme for the realization of an all-optical binary full adder employing two XOR gates, two AND gates, and one OR gate. The XOR gate is realized using a Mach-Zehnder interferometer (MZI) based on a semiconductor optical amplifier (SOA). The AND and OR gates are based on the nonlinear properties of a semiconductor optical amplifier. The proposed scheme is driven by two input data streams and a carry bit from the previous less-significant bit order position. In our proposed design, we achieve extinction ratios for Sum and Carry output signals of 10 dB and 12 dB respectively. Successful operation of the system is demonstrated at 10 Gb/s with return-to-zero modulated signals.

All Optical Logic Gates Based on Two Dimensional Plasmonic Waveguides with Nanodisk Resonators

  • Dolatabady, Alireza;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.432-442
    • /
    • 2012
  • In this paper, we propose, analyze and simulate the performances of some new plasmonic logic gates in two dimensional plasmonic waveguides with nanodisk resonators, using the numerical method of finite difference time domain (FDTD). These gates, including XOR, XNOR, NAND, and NOT, can provide the highly integrated optical logic circuits. Also, by cascading and combining these basic logic gates, any logic operation can be realized. These devices can be utilized significantly in optical processing and telecommunication devices.

Realization of High Speed All-Optical Half Adder and Half Subtractor Using SOA Based Logic Gates

  • Singh, Simranjit;Kaler, Rajinder Singh;Kaur, Rupinder
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.639-645
    • /
    • 2014
  • In this paper, the scheme of a single module for simultaneous operation of all-optical computing circuits, namely half adder and half subtractor, are realized using semiconductor optical amplifier (SOA) based logic gates. Optical XOR gate by employing a SOA based Mach-Zehnder interferometer (MZI) configuration is used to get the sum and difference outputs. A carry signal is generated using a SOA-four wave mixing (FWM) based AND gate, whereas, the borrow is generated by employing the SOA-cross gain modulation (XGM) effect. The obtained results confirm the feasibility of our configuration by proving the good level of quality factor i.e. ~5.5, 9.95 and 12.51 for sum/difference, carry and borrow, respectively at 0 dBm of input power.

Application to 2-D Page-oriented Data Optical Cryptography Based on CFB Mode (CFB 모드에 기반한 2 차원 페이지 데이터의 광학적 암호화 응용)

  • Gil, Sang-Keun
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.424-430
    • /
    • 2015
  • This paper proposes an optical cryptography application to 2-D page-oriented data based on CFB(Cipher Feedback) mode algorithm. The proposed method uses a free-space optical interconnected dual-encoding technique which performs XOR logic operations in order to implement 2-D page-oriented data encryption. The proposed method provides more enhanced cryptosystem with greater security strength than the conventional CFB block mode with 1-D encryption key due to the huge encryption key with 2-D arrayed page type. To verify the proposed method, encryption and decryption of 2-D page data and error analysis are carried out by computer simulations. The results show that the proposed CFB optical encryption system makes it possible to implement stronger cryptosystem with massive data processing and long encryption key compared to 1-D block method.