• Title/Summary/Keyword: Optical Tracking

Search Result 470, Processing Time 0.027 seconds

Tilt analysis of optical pickup actuator using coupled fields analysis (연성해석을 이용한 광픽업 구동기 경사 해석)

  • 신창훈;김철진;이경택;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.684-687
    • /
    • 2002
  • In optical disk drive(ODD), pickup actuator, which comprises a key part of an optical disk drive equipment. must be thin. compact, and high sensitive. Low tilt is also an important requirement for the actuator, since optical disks are to high density. This tilt occurs from around the axis parallel to the tangential and radial direction of the disk. The main reason of the moment is the coupling effect between focus driving system and tracking driving system. This paper analyzed tut quantity due to focusing and tracking force through coupled fields analysts with electromagnetic analysis and structural analysis.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Lee, Jae-Sung;Kim, Sang-Hoon;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

Combination Analysis of Optical Tracking System Design Variables for Unknown Space Objects Using Effectiveness Analysis Simulation (효과분석 시뮬레이션을 이용한 미지 우주물체 광학 추적 시스템 설계 변수 조합 분석)

  • Hyun, Chul;Lee, Sangwook;Lee, Hojin;Park, Seung-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1312-1319
    • /
    • 2022
  • This paper defines an effectiveness index for optical continuous observation of unknown space objects and presents a range of design variables combinations that can satisfy the effectiveness index from a telescope/mount control system perspective using integrated simulation. The overall system-level simulation was implemented and the tracking performance was analyzed by considering design variables such as target position prediction and frame rate, image processing time and measurement error, target trajectory characteristics, and maneuver performance of mount gimbal. As a result of the analysis, it was confirmed that the continuous tracking performance of the optical observation system is dependent on the combination of frame rate and mount maneuver performance. In a situation where an optical observation system is designed or a similar system is implemented using COTS, an appropriate combination of parameters between design variables can be found through effectiveness analysis simulation as in this study.

A Tracking Vibration Estimation System Using a Genetic Algorithm (유전자 알고리즘을 이용한 트랙킹 진동량 추정 시스템)

  • Jin, Kyoung-Bog;Lee, Moon-Noh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.25-30
    • /
    • 2011
  • This paper presents a tracking vibration estimation system of the track-following system using a tracking loop gain adjustment algorithm and a genetic algorithm. The algorithms are introduced to estimate accurately the tracking vibration quantity in spite of the uncertainties of the tracking actuator. An estimated actuator model can be found by applying a genetic algorithm. Accordingly, the tracking vibration quantity can be estimated from the measured tracking error, the tracking controller and the estimated actuator model. The proposed tracking vibration estimation method is applied to the track-following system of an optical recording device and is evaluated through the experimental result.

Reliability Improvement of the Electro Optical Tracking System by using DLC Films (DLC 박막을 통한 전자광학추적장비 신뢰성 개선)

  • Shim, Bo-Hyun;Jo, Hee-Jin;Kim, Jang-Eun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.197-205
    • /
    • 2015
  • The Diamond Like Carbon(DLC) films for the Electro Optical Tracking System(EOTS) by using Plasma Enhanced Chemical Vapor Deposition(PECVD) method is presented. We achieve that the DLC films can reduce the surface delamination of thermal observation sensor front window due to the high hardness, low friction and chemical inertness which is comparable to a Si film. According to our experiment results, DLC films can be used for various electro optical systems to eliminate surface delamination.

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • Journal of the Korean Society of Visualization
    • /
    • v.3 no.1
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

A Study on the Moving Traget Tracking System using Joint Transform Correlator (JTC를 이용한 이동 표적 추적 시스템에 관한 연구)

  • 이상인;서춘원;양성현;이기서;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.7
    • /
    • pp.749-757
    • /
    • 1992
  • In this paper, as a more effective approach for maneuvering target tracking a realtime optical tracking system based of optical JTC(Joint Transform Correlator) which is capable of transforming the massive input target data into a few correlation peaks is implemented. And for real-time implementation the high resolution LCD(Liquid Crystal Display) spatialight modulator is used to construct the optical JTC system, and the mean binarization method is used to reduce the effects of background noises on correlation signal. From the good experimental results on maneuvering targets, the possibility of real-time moving target tarcking system based on optical JTC is a suggested.

  • PDF

Fast Natural Feature Tracking Using Optical Flow (광류를 사용한 빠른 자연특징 추적)

  • Bae, Byung-Jo;Park, Jong-Seung
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.345-354
    • /
    • 2010
  • Visual tracking techniques for Augmented Reality are classified as either a marker tracking approach or a natural feature tracking approach. Marker-based tracking algorithms can be efficiently implemented sufficient to work in real-time on mobile devices. On the other hand, natural feature tracking methods require a lot of computationally expensive procedures. Most previous natural feature tracking methods include heavy feature extraction and pattern matching procedures for each of the input image frame. It is difficult to implement real-time augmented reality applications including the capability of natural feature tracking on low performance devices. The required computational time cost is also in proportion to the number of patterns to be matched. To speed up the natural feature tracking process, we propose a novel fast tracking method based on optical flow. We implemented the proposed method on mobile devices to run in real-time and be appropriately used with mobile augmented reality applications. Moreover, during tracking, we keep up the total number of feature points by inserting new feature points proportional to the number of vanished feature points. Experimental results showed that the proposed method reduces the computational cost and also stabilizes the camera pose estimation results.

Model-Following Control in Random Access Deviecs for Velocity Performance Enhancement (랜덤액세스 장치의 속도성능 향상을 위한 모델추종 제어기의 적용)

  • Lee, J.H;Park, K.H;Kim, S.H;Kwak, Y.K
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.115-126
    • /
    • 1996
  • In the time optimal control problem, bang-bang control has been used becaese it is the theoretical time minimum solution. However, to improve tracking speed performance in the time optimal control, it is important to select a switching point accurately which makes the velocity zero near the target track. But it is not easy to select the swiching point accurately because of the damping coefficient variation and uncertainties of modeling an actual system. The Adaptive model following control(AMFC) is implemented to relieve the difficulty and inconvenience of this task. The AMFC and make the controlled plant follow as closely as possible to a desired reference model whose switching point can be calculated easily and accurately, assuring the error between the states of the reference model and those of the controlled plant appoaches zero. The hybrid control method composed of AMFC and PID is applied to a tracking actuator of the magneto optical disk drive(MODD) in random access devices to improve its slow tracking performance. According to the simulaion and experimental results, the average tracking time as small as 20ms is obtained for a 3.5 magneto-optical disk drive. The AMFC also can be applied for other random access devices to improve the average tracking performance.

Implementation of Stereo Object Tracking Simulator using Optical JTC (광 JTC를 이용한 스테레오 물체추적 시뮬레이터의 구현)

  • Lee, Jae-Soo;Kim, Kyu-Tae;Kim, Eun-Soo
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.8
    • /
    • pp.68-78
    • /
    • 1999
  • In the typical stereo vision system, when the focus points of the left and right images are mismatched or the moving object is not in the center of the image, not only the observer can be fatigued & unconscious of three-dimensional effect, but also hard to track the moving object. Therefore, the stereo object tracking system can be used to track the moving object by controlling convergence angle to minimize stereo disparity and controlling pan/tilt to locate moving object in the center of the image. In this paper, as a new approach to stereo object tracking system we introduce a stereo object tracking simulator based on the optical JTC system capable of adaptive tracking. By using this simulator, any kinds of experimental results can be predicted & analyzed and the processing if real-time implementation of stereo object tracking system is suggested through some optical experiments even if background noises exist.

  • PDF