• Title/Summary/Keyword: Optical Temperature Sensor

Search Result 372, Processing Time 0.02 seconds

A Development of Surface Temperature Monitoring System for Underground Tunnel Cable Joint using Wireless Sensor (무선센서를 이용한 지하전력구의 케이블 접속함 표면온도감시시스템 개발)

  • Kim, Young-Il;Song, Jae-Ju;Shin, Jin-Ho;Yi, Bong-Jae;Cho, Seon-Ku
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.11
    • /
    • pp.1879-1884
    • /
    • 2007
  • In the electric power industry, it is important that the supply of energy must be guaranteed. Many power utilities control and supervise the transmission line to avoid power failures. In case of underground tunnel, some troubles are reported in cable joint. To stabilize the power, it is needed to monitor the cable joint. Many researches of cable joint monitoring have been going on by partial discharge measurement and temperature measurement using optical cable. These methods need much cost to install and maintain, so it is only used in critical transmission line. In this research, we use wireless sensor technology, because of its low cost and easy installation. We develop the temperature monitoring system for cable joint. Temperature sensor is installed on the surface of cable joint and sends data to server through router node using wireless network. Generally Ad hoc routing is searched in wireless network. However, in this research, we design the static linear routing mechanism, which is suitable for electric power line monitoring and analyze the life time of the sensor node by measuring the amount of the battery consumption.

Development of A FBG Sensor Interrogator for Detecting Strain and Performance Comparison of Peak Detection Algorithms (변형 검출을 위한 FBG 센서 인테로게이터 개발과 피크검출 알고리즘 성능 비교)

  • Park, Keun-Soo;Park, Jang-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1137-1142
    • /
    • 2013
  • FBG sensors are mainly used to measure strain and temperature of structures. In this paper, an interrogator of FBG sensors is developed and implemented to measure the crack of structures using FPGA and DSP. Developed interrogator consists of an optical source, an optical circulator, an optical grating and a CCD sensor and controller. The spectrum of the reflected light from the FBG sensor is analyzed and peak wavelength is detected. Next, strain of structure can be measured using shift of peak wavelength. Centroid algorithm and Gaussian fitting which are mainly applied to detect peak wavelength of the interrogator are compared in this paper. As a result of experiment, Gaussian fitting is suitable for a developed interrogator.

Properties of glass fiber by adding $Ga_2O_3$ in the $SiO_2-PbO-K_2O-Al_2O_ 3$ system for infrared sensor ($Ga_2O_3$ 첨가에 따른 $SiO_2-PbO-K_2O-Al_2O_ 3$계 적외선 센서용 glass fiber의 특성)

  • 이명원;윤상하;강원호
    • Electrical & Electronic Materials
    • /
    • v.9 no.10
    • /
    • pp.1047-1052
    • /
    • 1996
  • In this study, the thermal and optical proper-ties of multicomponent oxide glass fiber for IR sensor by adding heavy metal oxide Ga$_{2}$O$_{3}$ were investigated. The fiber samples were made by rod-in tube method. The optical loss of fiber was measured in 0.3-1.8/M wavelength region. As Ga$_{2}$O$_{3}$ increased up to 12wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 564.deg. C and from 548.deg. C to 612.deg. C respectively. Whereas the thermal expansion coefficient was decreased from 102 to 88.2*10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.662, and IR cut-off wavelength was enlarged from 4.64.mu.m to 5.22.mu.m. The optical loss of fiber was decreased and more remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF

Performance Test of the Boltwood Cloud Sensor for the Meteorological Condition of Optical Satellite Observation (위성 광학관측 가능 기상상태 판단을 위한 Boltwood 구름센서 성능 시험)

  • Bae, Youngho;Yoon, Joh-Na;Jo, Jung Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Youngsik;Park, Sun-Youp;Park, Jang-Hyun;Choi, Jin;Kim, Myung-Jin;Kim, Jihye
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2013
  • The Boltwood Cloud Sensor is meteorological sensor that is used to estimate an amount of clouds in the sky. This sensor will be installed for OWL(Optical Wide-field patroL) telescope and observatory system of Korea Astronomy and Space Science. Before applying this sensor to an observatory system, we performed test observations at Chungbuk University Observatory at Jincheon, Chungbuk. During the test run, a significant correlation between air temperature difference and the number of visible stars recorded in the CCD frames has not been found. This preliminary result can be attributed to test environment of the observation and our lack of knowledge on calculation algorithm as well as the hardware system of the Boltwood Cloud Sensor.In this paper, we present the procedure and the result of the performance test employing the cloud sensor.

Development of Temperature Compensated Micro Cone by using Fiber Optic Sensor (광섬유를 이용한 온도 보상형 마이크로콘의 개발)

  • Kim, Raehyun;Lee, Woojin;Yoon, Hyung-Koo;Lee, Jong-Sub
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.163-174
    • /
    • 2009
  • Mechanical device using the load cell or strain gage sensor can be influenced by tempearute changes because temperature change can cause a shift in the load cell or straing gage output at zero loading. In this paper, micro cone penetrometers with 1~7mm in diameter, are developed by using an optical fiber sensor (FBG: Fiber Bragg Grating) to compensate the continous temperature change during cone penetration test. Note the temperature compensated method using optical fiber sensor which has hair-size in diameter, and is not affected by environmental conditions because the measured data is the wavelength shifting of the light instead of the intensity of the electric voltage. Temperature effect test shows that the output voltage of strain gage changes and increases with an increase in the temperature. A developed FBG cone penetrometer, however, achieves excellent temperature compensation during penetration, and produces continuous change of underground temperature. In addition, the temperature compensated FBG cone shows the excellent sensitivity and detects the interface of the layered soils with higher resolution. This study demonstrates that the fiber optic sensor renders the possibility of the ultra small size cone and the new fiber optic cone may produce more reliable temperature compensated tip resistance.

Optimal Design of Fiber-optic Surface Plasmon Resonance Sensors

  • Jung, Jae-Hoon;Kim, Min-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.55-58
    • /
    • 2007
  • We propose a systematic method for design of fiber-optic surface plasmon resonance (SPR) sensors. We used rigorous coupled wave analysis (RCWA) for analysis of the transmission spectrum, and the (1+1) evolution strategy (ES) was employed as an optimization tool. The simulation results show that the optimization method presented here is very useful in designing fiber-optic SPR sensor for strain and temperature measurement. This algorithm can be extended to another objective function with other weighting factors and optical parameters.

Case Study on Integrated In-line Oil Monitoring Sensor for Machine Condition Monitoring of Steel Making Industry (통합형 인-라인 오일 모니터링 센서의 제철설비 현장 적용사례)

  • Kong, H.;Han, H.G.;Kwak, J.S.;Chang, W.S.;Im, G.G.
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.73-77
    • /
    • 2010
  • One of the important trends for condition monitoring in the 21st century is the development of smart sensors that will permit the cost-effective continuous monitoring of key machine equipments. In this study, an integrated in-line oil monitoring sensor assigned for continuous in situ monitoring multiple parameters of oil performance is presented. The sensor estimates oil deterioration based on the information about chemical degradation, total contamination, water content of oil and oil temperature. The oil oxidation is estimated by "chromatic ratio", total contamination is measured by the changes in optical density of oil in three optical wave-bands ('Red', 'Green' and 'Blue') and water content is evaluated as relative saturation of oil by water. In order to evaluate the sensor's effectiveness, the sensor was applied to several used oil samples in steel making industry and the results were compared with those measured by standard test methods.

Thermo-optic Characteristics of Micro-structured Optical Fiber Infiltrated with Mixture Liquids

  • Wang, Ran;Wang, Yuye;Miao, Yinping;Lu, Ying;Luan, Nannan;Hao, Congjing;Duan, Liangcheng;Yuan, Cai;Yao, Jianquan
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.231-236
    • /
    • 2013
  • We present both theoretically and experimentally the thermo-optic characteristics of micro-structured optical fiber (MOF) filled with mixed liquid. The performance of MOF depends on the efficient interaction between the fundamental mode of the transmitted light wave and the tunable thermo-optic materials in the cladding. The numerical simulation indicates that the confinement loss of MOF presents higher temperature dependence with higher air-filling ratios $d/{\Lambda}$, longer incident wavelength and fewer air holes in the cladding. For the 4cm liquid-filled grapefruit MOF, we demonstrate from experiments that different proportions of solutions lead to tunable temperature sensitive ranges. The insertion loss and the extinction ratio are 3~4 dB and approximate 20 dB, respectively. The proposed liquid-filling MOF will be developed as thermo-optic sensor, attenuator or optical switch with the advantages of simple structure, compact configuration and easy fabrication.

Fiber Bragg Grating Temperature Sensor by the Wavelength Tuning Using the Temperature Dependence of VCSEL (빅셀(VCSEL)의 온도 의존성을 이용한 파장 가변 형 광섬유 격자 온도센서)

  • Lee, Chung-Ki;Kim, Sung-Moon
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.6
    • /
    • pp.241-246
    • /
    • 2018
  • In this paper, a low-cost optical temperature sensor is implemented, using a fiber Bragg grating (FBG) as the temperature probe and a low-cost VCSEL with temperature-dependent output wavelength as the light source. To analyze the wavelength of the reflected light from the FBG, an interrogation was applied using a method of referring to the internal temperature according to the output wavelength of the VCSEL. When the temperature of the VCSEL was adjusted from 14 to $52.2^{\circ}C$, the output wavelength varied from 1519.90 to 1524.25 nm. The degree of wavelength tuning according to temperature was $0.114nm/^{\circ}C$. The variable wavelength repeatability error according to temperature was ${\pm}0.003nm$, and the temperature measurement error was ${\pm}0.18^{\circ}C$. As a result of measuring the temperatures from 22.3 to $194.2^{\circ}C$, the value of the internal temperature change of the light source according to the applied temperature ${\Delta}T$ was $0.146^{\circ}C/{\Delta}T$, the change in reflected wavelength of the temperature probe according to applied temperature ${\Delta}T$ was measured at $16.64pm/^{\circ}C$. and the temperature measurement error of the sensor was ${\pm}1^{\circ}C$.

Optical properties of the glass fiber by adding Ga$_2$O$_3$ in the SiO$_2$-PbO-K$_2$O-Al$_2$O$_3$ system for Infrared sensor (Ga$_2$O$_3$ 첨가에 따른 SiO$_2$-PbO-K$_2$O-Al$_2$O$_3$계 적외선 센서용 Glass fiber의 광학적 특성)

  • 윤상하;강월호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.68-71
    • /
    • 1996
  • In the study, the thermal and optical properties of SiO$_2$-PbO-K$_2$O-Al$_2$O$_3$ g1asses were investigated. According to Ga$_2$O$_3$ addictions, the properties of bulk glass, transition temperature and softening temperature were increased, whereas thermal expansion coefficient was decreased; In the optical properties, refractive index was increased, and IR cut-off wavelength was enlarged from 4.64$\mu\textrm{m}$ to 5.22$\mu\textrm{m}$. But, the optical loss of fiber was decreased.

  • PDF