• Title/Summary/Keyword: Optical Switching

Search Result 560, Processing Time 0.024 seconds

Soft-State Bandwidth Reservation Mechanism for Slotted Optical Burst Switching Networks

  • Um, Tai-Won;Choi, Jun-Kyun;Guo, Jun;Ryu, Won;Lee, Byung-Sun
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.216-226
    • /
    • 2008
  • This paper proposes a novel transport network architecture for the next generation network (NGN) based on the optical burst switching technology. The proposed architecture aims to provide efficient delivery of various types of network traffic by satisfying their quality-of-service constraints. To this end, we have developed a soft-state bandwidth reservation mechanism, which enables NGN transport nodes to dynamically reserve bandwidth needed for active data burst flows. The performance of the proposed mechanism is evaluated by means of numerical analysis and NS2 simulation. Our results show that the packet delay is kept within the constraint for each traffic flow and the burst loss rate is remarkably improved.

  • PDF

An Optical Asynchronous Transfer Mode(ATM) Switching System Using Free Space Optics and an Output Buffer Memory (자유공간 광학과 출력 버퍼 메모리를 이용한 광 Asynchronous Transfer Mode(ATM) 교환방식)

  • 지윤규;이상신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.4
    • /
    • pp.326-334
    • /
    • 1991
  • We propose an optical Asynchronous Transfer Mode(ATM) switching system using free-space optics and an output buffer memory. The distributor system in the switching fabric was analyzed using the Huygens-Fresnel principle and lens transformation. For monochromatic illumination, a pattern similar to the Fourier transform of the input distribution was observed across the output plane. A spatially broadened intensity distribution across the the output plane can be expected when the system is illminated with a partially coherent, quasimonochromatic beam. Spatially coherent pulses as short as 100fs can propagate through the distributor without severe spatial broadening.

  • PDF

Feedback Burst Loss Ratio Control for Link Performance Improvement in Optical Bur st Switching Networks

  • Linh, To Hoang;Yoon, Gwi-Ok;Nam, Jae-Hyun;Solongo, Ganbold;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.9
    • /
    • pp.1067-1076
    • /
    • 2013
  • Known as an important criterion that evaluates performance of future high-speed backbone networks, burst data loss ratio is well-studied in Optical Burst Switching networks. Current literatures mostly focus on reduce burst loss ratio without considering the system stability and link utilization after reducing. In this paper, we propose a novel framework which comes from feedback theoretic to dynamically control burst loss ratio in OBS. The proposed scheme tries to track the pre-set values of burst loss ratio and increases the stability and link utilization degree. The simulation results show that measured burst loss ratio always tracks setup reference with small errors, wavelength channel utilization is increased up to 2% and the system stability is also improved.

An Enhanced Dynamic Multilayer Routing for Networks with Protection Requirements

  • Urra, Anna;Calle, Eusebi;Marzo, Jose L.;Vila, Pere
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.377-382
    • /
    • 2007
  • This paper presents a new enhanced dynamic and multilayer protection(DMP) routing scheme that considers cooperation between packet and wavelength switching domain in order to minimize the resource consumption. The paper describes the architecture of the multilayer network scenario and compares the proposed algorithm with other routing mechanisms applying protection at the IP/multi-protocol label switching(MPLS) layer or at the optical layer. Simulation results show that DMP reduces the number of optical-electrical-optical(o-e-o) operations and makes an efficient use of the network resources compared to non-multilayer proposals.

A Nickel Micro Switch Operating in a Wide Range of Torsion Angles

  • Kahng, Seong-Joong;Kim, Jae-Hyeok;Kim, Young-Min
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.263-266
    • /
    • 2007
  • We report a nickel optical MEMS switch, being able to rotate through a large angle and to accommodate multiple channels. The proposed optical switch consists of a thin nickel mirror and two torsion springs supporting the mirror. The torsion springs are designed using a finite element method (FEM) such that plastic deformation of the thin nickel is avoided during the large torsion actuation. For switching speed improvement, transient vibration of the released mirror is suppressed by optimizing the mirror design and a fast switching response of $200\;{\mu}s\;(pull-down)/300\;{\mu}s\;(pull-up)$ is demonstrated.

Modeling of a controlled retransmission scheme for loss recovery in optical burst switching networks

  • Duong, Phuoc Dat;Nguyen, Hong Quoc;Dang, Thanh Chuong;Vo, Viet Minh Nhat
    • ETRI Journal
    • /
    • v.44 no.2
    • /
    • pp.274-285
    • /
    • 2022
  • Retransmission in optical burst switching networks is a solution to recover data loss by retransmitting the dropped burst. The ingress node temporarily stores a copy of the complete burst and sends it each time it receives a retransmission request from the core node. Some retransmission schemes have been suggested, but uncontrolled retransmission often increases the network load, consumes more bandwidth, and consequently, increases the probability of contention. Controlled retransmission is therefore essential. This paper proposes a new controlled retransmission scheme for loss recovery, where the available bandwidth of wavelength channels and the burst lifetime are referred to as network conditions to determine whether to transmit a dropped burst. A retrial queue-based analysis model is also constructed to validate the proposed retransmission scheme. The simulation and analysis results show that the controlled retransmission scheme is more efficient than the previously suggested schemes regarding byte loss probability, successful retransmission rate, and network throughput.