• 제목/요약/키워드: Optical Observation

검색결과 760건 처리시간 0.021초

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations I: COMS simulation case

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.221-228
    • /
    • 2015
  • To protect and manage the Korean space assets including satellites, it is important to have precise positions and orbit information of each space objects. While Korea currently lacks optical observatories dedicated to satellite tracking, the Korea Astronomy and Space Science Institute (KASI) is planning to establish an optical observatory for the active generation of space information. However, due to geopolitical reasons, it is difficult to acquire an adequately sufficient number of optical satellite observatories in Korea. Against this backdrop, this study examined the possible locations for such observatories, and performed simulations to determine the differences in precision of optical orbit estimation results in relation to the relative baseline distance between observatories. To simulate more realistic conditions of optical observation, white noise was introduced to generate observation data, which was then used to investigate the effects of baseline distance between optical observatories and the simulated white noise. We generated the optical observations with white noise to simulate the actual observation, estimated the orbits with several combinations of observation data from the observatories of various baseline differences, and compared the estimated orbits to check the improvement of precision. As a result, the effect of the baseline distance in combined optical GEO satellite observation is obvious but small compared to the observation resolution limit of optical GEO observation.

Optical Orbit Determination of a Geosynchronous Earth Orbit Satellite Effected by Baseline Distances between Various Ground-based Tracking Stations II: COMS Case with Analysis of Actual Observation Data

  • Son, Ju Young;Jo, Jung Hyun;Choi, Jin;Kim, Bang-Yeop;Yoon, Joh-Na;Yim, Hong-Suh;Choi, Young-Jun;Park, Sun-Youp;Bae, Young Ho;Roh, Dong-Goo;Park, Jang-Hyun;Kim, Ji-Hye
    • Journal of Astronomy and Space Sciences
    • /
    • 제32권3호
    • /
    • pp.229-235
    • /
    • 2015
  • We estimated the orbit of the Communication, Ocean and Meteorological Satellite (COMS), a Geostationary Earth Orbit (GEO) satellite, through data from actual optical observations using telescopes at the Sobaeksan Optical Astronomy Observatory (SOAO) of the Korea Astronomy and Space Science Institute (KASI), Optical Wide field Patrol (OWL) at KASI, and the Chungbuk National University Observatory (CNUO) from August 1, 2014, to January 13, 2015. The astrometric data of the satellite were extracted from the World Coordinate System (WCS) in the obtained images, and geometrically distorted errors were corrected. To handle the optically observed data, corrections were made for the observation time, light-travel time delay, shutter speed delay, and aberration. For final product, the sequential filter within the Orbit Determination Tool Kit (ODTK) was used for orbit estimation based on the results of optical observation. In addition, a comparative analysis was conducted between the precise orbit from the ephemeris of the COMS maintained by the satellite operator and the results of orbit estimation using optical observation. The orbits estimated in simulation agree with those estimated with actual optical observation data. The error in the results using optical observation data decreased with increasing number of observatories. Our results are useful for optimizing observation data for orbit estimation.

Two-Site Optical Observation and Initial Orbit Determination for Geostationary Earth Orbit Satellites

  • Choi, Jin;Choi, Young-Jun;Yim, Hong-Suh;Jo, Jung-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권4호
    • /
    • pp.337-343
    • /
    • 2010
  • Optical observation system provides angle-only measurement for orbit determination of space object. Range measurement can be directly acquired using laser ranging or tone ranging system. Initial orbit determination (IOD) by using angle- only data set shows discrepancy according to the measurement time interval. To solve this problem, range measurement data should be added for IOD. In this study, two-site optical observation was used to derive the range information. We have observed nine geostationary earth orbit satellites by using two-site optical observation system. The determination result of the range shows the accuracy over 99.5% compared to the results from the satellite tool kit simulation. And we confirmed that the orbit determination by the Herrick-Gibbs method with the range information obtained from the two-site observation is more accurate than the orbit determination by Gauss method with the one-site observation. For more accurate two-site optical observation, a baseline should satisfy an optimal condition of length and more precise observation system needed.

지구관측위성 현황 조사

  • 신재민;김희섭;김응현;임정흠
    • 항공우주기술
    • /
    • 제2권1호
    • /
    • pp.63-72
    • /
    • 2003
  • 지구 관측 위성은 크게 광학 관측 위성과 레이더 관측 위성으로 분류할 수 있다. 위성의 형태는 임무의 종류에 따라 결정된다. 광학 위성의 경우 높은 지상 해상도가 요구되는 경우 적당하며, 기상 조건에 관계없이 영상을 얻기 위해서는 레이더 관측 위성이 적합하다. 국내에서도 정보의 중요성이 증가됨에 따라 위성의 필요성이 증가되었다. 이러한 이유로 본 논문에서는 지구 관측 위성의 개발 동향 및 현황을 기술하였다. 이러한 위성 기술의 추세를 고려하여 국내 위성 개발이 계획되어야 할 것이다.

  • PDF

WWW를 이용한 원격관측시스템 (REMOTE OBSERVATION SYSTEM ON WORLD WIDE WEB)

  • 박병곤;육인수;한인우;김승리;천무영;성현철
    • 천문학논총
    • /
    • 제13권1호
    • /
    • pp.75-84
    • /
    • 1998
  • We present the development of a remote observation system runnig on world wide web (WWW). The system consists of a 30cm Schmidt Cassegrain telescope and ST-7 CCD camera. We built the controllers and drivers of the telescope and the control softwares including the network control. The self-developed techniques in the hard wares and softwares can be applied to other projects in Korea. Observers can access the system via WWW home page, to reserve observation times, to send control commands, to retrieve images and various information useful for observation. This system can be widely used by students and amateur astronomers as well as professional astronomers who need a lot of small telescope time.

  • PDF

우주관측용 광학계의 적외선 초자 초정밀 가공 기술개발 (Development of the Ultra Precision Machining of IR Material for Space Observation Optical System)

  • 양순철;원종호
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.9-14
    • /
    • 2010
  • Using an IR (infrared) optical system of observation and research were performed long before. Nowadays satellites equipped with IR optical system observe the earth and universe. In this paper, we developed the IR optical system for main payload of the STSAT-3 (Science and Technology Satellite -3). We studied the ultra precision machining technique to fabricate FPL-53 lenses which is the IR optical material for space observation camera of the STSAT-3. DOE (Design of Experiment) was used to find best machining characteristic for FPL-53. Finally we fabricated FPL-53 aspheric lens with the form accuracy of P-V $0.36\;{\mu}m$.

컴퓨터를 이용한 지구관측 카메라의 광학정렬 (Computer-Aided Alignment of an Earth Observation Camera)

  • 김도형;최영완;강명석;김이을;양호순
    • 한국항공우주학회지
    • /
    • 제32권10호
    • /
    • pp.142-146
    • /
    • 2004
  • 인공위성용 지구관측 카메라나 천문관측 망원경에는 무게와 부피의 제약 때문에 Cassegrain 방식 망원경이 많이 쓰인다. 이와 같은 위성용 광학계의 성공적인 임무 수행을 위해서는 광학계의 정밀 정렬이 필수적이다. 본 논문에서는 인공위생용 지구관측 카메라인 MAC (Medium-sized Aperture Camera)의 조립 과정에 적용된 컴퓨터를 이용한 광학정렬 방법의 모사와 정렬실험 결과를 정리한다.

Searching for Electromagnetic Counterpart of Gravitational Wave Source with KMTNet

  • Kim, Joonho;Im, Myungshin;Lee, Chung-Uk;Kim, Seung-Lee
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.62.3-62.3
    • /
    • 2019
  • After first identification of electromagnetic counterpart of gravitational wave source (GW170817), era of multi-messenger astronomy has begun. For specifying coordinate, magnitude, and host galaxy information, optical follow-up observation of GW source becomes important. With following engineering run and O3 run of LIGO and VIRGO starting in March 2019, we present searching strategy for optical counterpart of GW source using KMTNet. 24 hours monitoring system and large field of view (4 square-degree) of KMTNet are advantage to discover a transient like GW event. By performing tiling observation of high probability area in GW localization map, we expect to observe early light-curve of GW optical counterpart. After identification, follow-up observation with various KMTNet bands and other telescopes like Gemini and UKIRT will also be performed. We will study collision mechanism, progenitor, and characteristics of host galaxy using observation data of GW source.

  • PDF

소형 위성용 고해상도 광학카메라 광학설계 (An optical design of a high resolution earth observation camera for small satellites)

  • 이준호;김용민;이응식;유상근;김이을;최영완;박동조
    • 한국광학회지
    • /
    • 제11권1호
    • /
    • pp.6-12
    • /
    • 2000
  • 위성에 탑재된 지구관측용 카메라는, 지상의 망원경과 같은 원리로, 우주상공에서 지표면 관측을 자동적으로 수행하고 관측정보를 지상으로 전달해 주는 장치다. 이용 목적에 따라 카메라의 해상도 또는 분해능, 관측대역, 관측폭, 위성의 궤도 등의 규격이 결정된다. 고해상도는 카메라 관련 제반 기술 및 경험이 부족한 국내의 여건에 적합한 소형 위성용 고해상도 카메라의 규격을 제시하며 이에 따른 광학 설계와 제작, 조립 및 측정오차를 제시한다.

  • PDF

Visibility Analysis of Domestic Satellites on Proposed Ground Sites for Optical Surveillance

  • Kim, Jae-Hyuk;Jo, Jung-Hyun;Choi, Jin;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Jang-Hyun;Park, Eun-Seo;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권4호
    • /
    • pp.319-332
    • /
    • 2011
  • The objectives of this study are to analyze the satellite visibility at the randomly established ground sites, to determine the five optimal ground sites to perform the optical surveillance and tracking of domestic satellites, and to verify the acquisition of the optical observation time sufficient to maintain the precise ephemeris at optimal ground sites that have been already determined. In order to accomplish these objectives, we analyzed the visibility for sun-synchronous orbit satellites, low earth orbit satellites, middle earth orbit satellites and domestic satellites as well as the continuous visibility along with the fictitious satellite ground track, and calculate the effective visibility. For the analysis, we carried out a series of repetitive process using the satellite tool kit simulation software developed by Analytical Graphics Incorporated. The lighting states of the penumbra and direct sun were set as the key constraints of the optical observation. The minimum of the observation satellite elevation angle was set to be 20 degree, whereas the maximum of the sun elevation angle was set to be -10 degree which is within the range of the nautical twilight. To select the candidates for the optimal optical observation, the entire globe was divided into 84 sectors in a constant interval, the visibility characteristics of the individual sectors were analyzed, and 17 ground sites were arbitrarily selected and analyzed further. Finally, five optimal ground sites (Khurel Togoot Observatory, Assy-Turgen Observatory, Tubitak National Observatory, Bisdee Tier Optical Astronomy Observatory, and South Africa Astronomical Observatory) were determined. The total observation period was decided as one year. To examine the seasonal variation, the simulation was performed for the period of three days or less with respect to spring, summer, fall and winter. In conclusion, we decided the optimal ground sites to perform the optical surveillance and tracking of domestic satellites and verified that optical observation time sufficient to maintain the precise ephemeris could be acquired at the determined observatories.