• Title/Summary/Keyword: Optical Module

Search Result 598, Processing Time 0.025 seconds

A Fundamental Study on Structure Health Monitoring System Based on Energy Harvesting of Harbour Structure (자가발전기반 항만 구조물 건전성 모니터링 시스템에 대한 기초연구)

  • Jong-Hwa Yi;Seung-Hyeon Lee;Young-seok Kim;Chul Park
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.847-860
    • /
    • 2022
  • Purpose: The purpose of this paper is to present a basic study on the development of a self-generation infrastructure for monitoring the health of harbour structures. Method: By developing a self-generation system and fiber optic sensors for seawater, the study provides basic research data on port structure health monitoring. Result: Through sunlight simulation analysis, 4-5 hours of sunlight can be secure in the domestic environment. Through this, the optical splitter (Introgate) that collects the raw data from the FBG sensor applicable to seawater, the MCU that calculates it, the IoT module with wireless communication functionality, the monitoring server and the supply system are set up. Conclusion: Monitoring port structures directly with fiber optic probes (FBG) and the possibility of using selfpowered systems were confirmed.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.

Implant Isolation Characteristics for 1.25 Gbps Monolithic Integrated Bi-Directional Optoelectronic SoC (1.25 Gbps 단일집적 양방향 광전 SoC를 위한 임플란트 절연 특성 분석)

  • Kim, Sung-Il;Kang, Kwang-Yong;Lee, Hai-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.8
    • /
    • pp.52-59
    • /
    • 2007
  • In this paper, we analyzed and measured implant isolation characteristics for a 1.25 Gbps monolithic integrated hi-directional (M-BiDi) optoelectronic system-on-a-chip, which is a key component to constitute gigabit passive optical networks (PONs) for a fiber-to-the-home (FTTH). Also, we derived an equivalent circuit of the implant structure under various DC bias conditions. The 1.25 Gbps M-BiDi transmit-receive SoC consists of a laser diode with a monitor photodiode as a transmitter and a digital photodiode as a digital data receiver on the same InP wafer According to IEEE 802.3ah and ITU-T G.983.3 standards, a receiver sensitivity of the digital receiver has to satisfy under -24 dBm @ BER=10-12. Therefore, the electrical crosstalk levels have to maintain less than -86 dB from DC to 3 GHz. From analysed and measured results of the implant structure, the M-BiDi SoC with the implant area of 20 mm width and more than 200 mm distance between the laser diode and monitor photodiode, and between the monitor photodiode and digital photodiode, satisfies the electrical crosstalk level. These implant characteristics can be used for the design and fabrication of an optoelectronic SoC design, and expended to a mixed-mode SoC field.

IGRINS Design and Performance Report

  • Park, Chan;Jaffe, Daniel T.;Yuk, In-Soo;Chun, Moo-Young;Pak, Soojong;Kim, Kang-Min;Pavel, Michael;Lee, Hanshin;Oh, Heeyoung;Jeong, Ueejeong;Sim, Chae Kyung;Lee, Hye-In;Le, Huynh Anh Nguyen;Strubhar, Joseph;Gully-Santiago, Michael;Oh, Jae Sok;Cha, Sang-Mok;Moon, Bongkon;Park, Kwijong;Brooks, Cynthia;Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyuong;Hill, Peter C.;Lee, Sungho;Barnes, Stuart;Yu, Young Sam;Kaplan, Kyle;Mace, Gregory;Kim, Hwihyun;Lee, Jae-Joon;Hwang, Narae;Kang, Wonseok;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.90-90
    • /
    • 2014
  • The Immersion Grating Infrared Spectrometer (IGRINS) is the first astronomical spectrograph that uses a silicon immersion grating as its dispersive element. IGRINS fully covers the H and K band atmospheric transmission windows in a single exposure. It is a compact high-resolution cross-dispersion spectrometer whose resolving power R is 40,000. An individual volume phase holographic grating serves as a secondary dispersing element for each of the H and K spectrograph arms. On the 2.7m Harlan J. Smith telescope at the McDonald Observatory, the slit size is $1^{{\prime}{\prime}}{\times}15^{{\prime}{\prime}}$. IGRINS has a plate scale of 0.27" pixel-1 on a $2048{\times}2048$ pixel Teledyne Scientific & Imaging HAWAII-2RG detector with a SIDECAR ASIC cryogenic controller. The instrument includes four subsystems; a calibration unit, an input relay optics module, a slit-viewing camera, and nearly identical H and K spectrograph modules. The use of a silicon immersion grating and a compact white pupil design allows the spectrograph collimated beam size to be 25mm, which permits the entire cryogenic system to be contained in a moderately sized ($0.96m{\times}0.6m{\times}0.38m$) rectangular Dewar. The fabrication and assembly of the optical and mechanical components were completed in 2013. From January to July of this year, we completed the system optical alignment and carried out commissioning observations on three runs to improve the efficiency of the instrument software and hardware. We describe the major design characteristics of the instrument including the system requirements and the technical strategy to meet them. We also present the instrumental performance test results derived from the commissioning runs at the McDonald Observatory.

  • PDF

Sensibility Evaluation on the Correlated Color Temperature in White LED Lighting (백색 LED 조명의 색온도에 관한 감성평가)

  • Jee, Soon-Duk;Lee, Sang-Hyuk;Choi, Kyoung-Jae;Park, Joung-Kyu;Kim, Chang-Hae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 2008
  • The aim of this study is to investigate the sensitivity evaluation of human beings in reacting to the correlated color temperature of the optical properties of white LED lighting. For the sake of this study, white light-emitting diode modules have been fabricated their correlated color temperature have been measured, test cabinets for the sensitivity evaluation have been constructed with the white LED modules, and their sensitivity reactions on the test cabinets have been evaluated and analyzed. The sensitivity reaction has been evaluated by the semantic differential method with 15 selected questions, and the reliability and the content validity of their lighting have been analyzed to 3 factors which foe the activity as the first factor, the stability as the second one, the potency as the third one, respectively. For the data analysis on the sensitivity reaction, the dependent variable is the score of the sensitivity evaluation and the independent one is the correlated color temperature of the test module. The results of this study is as follows: In the case of the sensitive evaluation on the activity and the potency in the white LED lighting compared with the fluorescent lamp, the subjects have made higher mark on $MA_3$ with 8,300[K], and in the factor of the stability, they have made higher mark on $MA_1$ with 3,800[K].

A study on the curing characteristics of multi-concentrating UV-LED Curable Coating (다중 집광성 UV-LED 경화형 코팅의 경화특성에 관한 연구)

  • Jung, Chan-Gwon;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.339-345
    • /
    • 2018
  • We investigated the curing properties of cured coatings for a multi-focal UV-LED. The coatings are for LEDs that operate at multiple UV wavelengths, unlike conventional single-wavelength UV-LEDs. Using UV-LED light sources with wavelengths of 365, 395, 420, and 450 nm, we analyzed the optical characteristics such as the direction of light flux and light source. We also analyzed the curing characteristics at each UV-LED wavelength to optimize the LED for composite wavelengths. The curing performance state was predicted through computer simulation for when the multiple wavelengths of UV light sources are superimposed, and then actual LEDs were designed and fabricated. To improve the internal high-speed curing, a multi-spot module was fabricated, in which each LED is condensed, and multiple wavelengths are synthesized and condensed at the same position. The adhesive strength, surface hardness, and internal hardness of the curing agent were tested by varying the wavelength combination conditions. The surface hardening and internal hardening were compared and analyzed using a hardness tester and FT-IR analyzer. As a result, the characteristics of the surface and internal hardness were improved by a multi-spot method in which four wavelengths were overlapped in a UV-LED rather than a single wavelength.

The Study on the optimized LED module of VMS for saving energy (에너지 절감을 위한 VMS LED 모듈 최적화 연구)

  • Kim, Young-Rok;Lee, Suk-Ki
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.231-238
    • /
    • 2011
  • Variable message signs(VMS) in use are being displaying with the LED device as the luminous source, and it is a recent trend to be changed from the Lamp type to the Surface-Mount Devices(SMD) type. The LED device leads to get VMS display brightly and clearly, leading to have visibility and legibility better than the existing VMS. However, the lights which display off the road, the unnecessary energy, might have negative effect on ecosystem. This study developed the way of getting the lights be displayed only to drivers without the unnecessary energy and estimated the energy efficiency of the development by the optical testing. As a result, this study showed that the energy consumption of the developed display device appeared to decrease by about 36.1% compared to the existing device. Also the upward and downward angle of the lights changed from an angle of $24^{\circ}C$ to $0^{\circ}C$and from an angle of $-24^{\circ}C$ to $-11^{\circ}C$, respectively. Therefore, it anticipates that the developed device would benefit highway safety due to an improvement in visibility and legibility compared to the existing VMS and the energy consumption would be less lower than the existing VMS.

A Study on the Optical Internal Recycle Rate and MLSS Concentration of Membrane Coupled $A_2O$ Process for Wastewater Treatment (하수처리를 위한 막결합형 $A_2O$공정에서 최적 내부 순환율 및 MLSS 농도에 관한 연구)

  • Kim Kwan-Yeop;Kim Jin-Mo;Kim Hyung-Soo;Lee Sang-Bek;Park Eugene;Bae Sung-Soo
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.114-120
    • /
    • 2005
  • The purpose of this study is to obtain practical information about membrane coupled $ A_2O$ system for muncipal wastewater treatment. A flat-plate microfiltration (MF) module with a pore size $0.25\;{\mu}m$ was submerged into the aeration basin and treated water was filtrated through the membrane by continuous suction with low pressure. The system was operated with synthetic wastewater to find operational parameters of internal recycle ratio and maximum MLSS showing best water quality and long-term stability. The internal recycle was defined as type 1 for aerobic to anoxic tank and type 2 for anoxic to anaerobic tank, respectively When the flux was maintained at $0.015\;m^3/m^2/hr$ (15 LMH) with 2Q type 1 internal recycle ratio, the optimal operational setting were 10 internal recycle ratio for type 2 and maximum MLSS of 11,000 mg/L among tested conditions. At this condition, removal efficiencies of BOD, CODcr, T-N and T-P showed $97.3\%,\;94.2\%,\;64.0\%,\;63.0\%$, respectively.

Image Processing Algorithms for DI-method Multi Touch Screen Controllers (DI 방식의 대형 멀티터치스크린을 위한 영상처리 알고리즘 설계)

  • Kang, Min-Gu;Jeong, Yong-Jin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.1-12
    • /
    • 2011
  • Large-sized multi-touch screen is usually made using infrared rays. That is because it has technical constraints or cost problems to make the screen with the other ways using such as existing resistive overlays, capacitive overlay, or acoustic wave. Using infrared rays to make multi-touch screen is easy, but is likely to have technical limits to be implemented. To make up for these technical problems, two other methods were suggested through Surface project, which is a next generation user-interface concept of Microsoft. One is Frustrated Total Internal Reflection (FTIR) which uses infrared cameras, the other is Diffuse Illumination (DI). FTIR and DI are easy to be implemented in large screens and are not influenced by the number of touch points. Although FTIR method has an advantage in detecting touch-points, it also has lots of disadvantages such as screen size limit, quality of the materials, the module for infrared LED arrays, and high consuming power. On the other hand, DI method has difficulty in detecting touch-points because of it's structural problems but makes it possible to solve the problem of FTIR. In this thesis, we study the algorithms for effectively correcting the distort phenomenon of optical lens, and image processing algorithms in order to solve the touch detecting problem of the original DI method. Moreover, we suggest calibration algorithms for improving the accuracy of multi-touch, and a new tracking technique for accurate movement and gesture of the touch device. To verify our approaches, we implemented a table-based multi touch screen.

Characterization of Interfacial Adhesion of Cu-Cu Bonding Fabricated by Thermo-Compression Bonding Process (열가압 접합 공정으로 제조된 Cu-Cu 접합의 계면 접합 특성 평가)

  • Kim, Kwang-Seop;Lee, Hee-Jung;Kim, Hee-Yeoun;Kim, Jae-Hyun;Hyun, Seung-Min;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.929-933
    • /
    • 2010
  • Four-point bending tests were performed to investigate the interfacial adhesion of Cu-Cu bonding fabricated by thermo-compression process for three dimensional packaging. A pair of Cu-coated Si wafers was bonded under a pressure of 15 kN at $350^{\circ}C$ for 1 h, followed by post annealing at $350^{\circ}C$ for 1 h. The bonded wafers were diced into $30\;mm\;{\times}\;3\;mm$ pieces for the test. Each specimen had a $400-{\mu}m$-deep notch along the center. An optical inspection module was installed in the testing apparatus to observe crack initiation at the notch and crack propagation over the weak interface. The tests were performed under a fixed loading speed, and the corresponding load was measured. The measured interfacial adhesion energy of the Cu-to-Cu bonding was $9.75\;J/m^2$, and the delaminated interfaces were analyzed after the test. The surface analysis shows that the delamination occurred in the interface between $SiO_2$ and Ti.