• Title/Summary/Keyword: Optical Interferometer

Search Result 614, Processing Time 0.02 seconds

Optical Performance Evaluation of SIL Assembly with Lateral Shearing Interferometer (층 밀리 간섭계를 이용한 고체침지렌즈의 광학적 성능 평가)

  • Lee, Jin-Eui;Kim, Wan-Chin;Choi, Hyun;Kim, Tae-Seob;Yoon, Yong-Joong;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.224-229
    • /
    • 2006
  • There has been studied flow to minimize the spot size to increase data capacity. Optical data storage devices are being developed near practical limits with wavelength and NA of 405nm and 0.85. There has been studied many types of next generation storage devices such as blu-ray multilayer system, probe based data storage and holographic data storage. Among these data storage devices, solid immersion lens(SIL) based near field recording (NFR) has been widely studied. In this system, SIL is the key component that focuses the laser beam with a very small size which enables ultra high data capacity. Therefore, optical performance evaluation system is required for SIL assembly. In this dissertation, a simple and accurate SIL assembly measurement method is proposed with wedge plate lateral shearing interferometer(LSI). Wedge plate LSI is cheaper than commercialized interferometer, robust to the vibration and the moving distance for phase shifting is large that is order of micrometer. We designed the thickness, wedge angle, material, surface quality and wavelength of wedge plate as 1mm, 0.02degree, fused silica, lamda/10(10-5) and 405nm, respectively. Also, we confirmed simulation and experimental results with quantitative analysis. This simple wedge plate LSI can be applied to different types of SIL such as solid immersion mirror(SIM), hemispherical, super-hemispherical and elliptical SIL.

  • PDF

Measuring limits of speckle shearing interferometer by double speckle interferometry (이중 스펙클 간섭계를 이용한 전단간섭계의 변형 측정 한계 측정)

  • Yoon Byung Gon;Yoon Jae Sun
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.5
    • /
    • pp.405-408
    • /
    • 2004
  • In this paper, we used a split-lens speckle shear interferometer using a double speckle interferometer, which enables continuous measurement of the deformation. We made two identical specklegrams corresponding to an object. With this method we could detect the measuring limits of the deformation for various shears. This experimental results showed that the measuring limits of a split-lens speckle shear interferometer are similar to the measuring limits of a double exposure speckle interferometer.

Implementation of incoherent triangular holography and numerical reconstruction of the complex hologram (인코히어런트 삼각 홀로그래피의 구현과 복소홀로그램의 수치적 복원)

  • 김수길;이병호;김은수;손정영
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.99-106
    • /
    • 1997
  • In this paper, we demonstrated, through experiment and numerical reconstruction, that the bias and the conjugate image, which are main drawbacks in incoherent holography, can be removed. By using wave plates of the modified triangular interferometer, which was made by adding simple passive devices to the conventional triangular interferometer, we adjusted the relative phase differences of two optical waves traveling in clockwise and counterclockwise. In this way, we obtained four intensity patterns, and then by manipulating the four intensity patterns electronically we obtained the complex hologram without bias and the conjugate image. Comparing numerical reconstruction results of the complex hologram with numerical reconstruction results of the hologram obtained from the conventional triangular interferometer, we demonstrated that bias and the conjugate image can be removed using the modified triangular interferometer.

  • PDF

Remote Sound Extraction Using Laser Doppler Interferometer (레이저 도플러 간섭계를 이용한 원거리 소리 추출)

  • Hwang, Jeong-hwan
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.108-113
    • /
    • 2021
  • We propose and experimentally demonstrate a method of remote sound extraction using laser Doppler interferometry. The output frequency of a laser Doppler interferometer changes to be the same as the frequency of the acoustic wave from than object vibrated by the sound due to the Doppler effect. Based on this phenomenon, we measure the vibrational frequency of a remote target affected by a sound wave in real time, via laser Doppler interferometry. We track the peak frequency of the interferometer's output via appropriate signal processing, which confirms that the characteristics of the so detected wave are the same as that of the original sound source. We also confirm that the same method can retrieve the sound waves not only from remote sources of single tones, but from those of any sound.

Characterization of Thermo-optical Properties of Ferroelectric P(VDF-TrFE) Copolymer Using Febry-Perot Interferometer (Febry-Perot 간섭계를 이용한 강유전 P(VDF-TrFE) 폴리머 열광학 특성평가)

  • Song, Hyun-Cheol;Kim, Jin-Sang;Yoon, Seok-Jin;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.19 no.4
    • /
    • pp.228-231
    • /
    • 2009
  • Phase transition in ferroelectric polymer is very interesting behavior and has been widely studied for real device applications, such as actuators and sensors. Through the phase transition, there is structural change resulting in the change of electrical and optical properties. In this study, we fabricated the Febry-Perot interferometer with the thin film of ferroelectric P(VDF-TrFE) 50/50 mol% copolymer, and thermo-optical properties were investigated. The effective thermo-optical coefficient of P(VDF-TrFE) was obtained as $2.3{\sim}3.8{\times}10^{-4}/K$ in the ferroelectric temperature region ($45^{\circ}C{\sim}65^{\circ}C$) and $6.0{\times}10^{-4}/K$ in the phase transition temperature region ($65^{\circ}C{\sim}85^{\circ}C$), which is a larger than optical silica-fiber and PMMA. The resonance transmission peak of P(VDF-TrFE) with the variation of temperature showed hysteretic variation and the phase transition temperature of the polymer in heating condition was higher than in the cooling condition. The elimination of the hysteretic phase transition of P(VDF-TrFE) is necessary for practical applications of optical devices.

Signal Stabilization of Optical Fiber Acoustic Sensor Using a Cylindrical Piezoelectric Stretcher (원통형 압전신장기를 이용한 광섬유 음향센서의 신호안정화)

  • Lee, D.-H.;Jho, M.-J.;Suh, S.-J.;Eun, H.-J
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.75-80
    • /
    • 1989
  • A Mach-Zehnder interferometer using single mode optical fiber was constructed which operates in homodyne detection scheme. Its response to air-borne soun pressure was examined experimentally. A signal stabilizer was developed for maintaining optical fiber interferometer in quadrature condition using a cylindrical piezoelectric stretcher. This maintains the optical fiber sensor at a maximum sensitivity in the presence of the phase drift caused by temperature fluctuation and other types of environmental disturbances.

  • PDF

Position Estimation of Sound Source Using Three Optical Mach-Zehnder Acoustic Sensor Array

  • Hwang, Jeong-hwan;Seon, Seokpyeong;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.573-578
    • /
    • 2017
  • Position estimation of a sound source based on time difference of arrival at an array of three acousto-optic sensors is introduced. Each sensor consists of a Mach-Zehnder interferometer including a sensing part in one arm that is a piece of fiber surrounded by membrane in order to enhance the acousto-optic effect. Estimation error of a recorded gunshot sound signal was evaluated with the theoretically calculated values for two different locations.

Fiber optic sensor technology for sensing/controlling vibration and deformation of lightweight structures (경량 구조물의 진통 및 변형 감지/제어를 위한 광섬유 센서 기술)

  • Han, Jae-Hung;Kang, Lae-Hyong;Mueller, Uwe C.;Rapp, Stephan;Baier, Horst
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.157-163
    • /
    • 2006
  • Vibration and deformation sensing control of lightweight structures using optical fiber sensor technology is introduced in this presentation. This paper shows several examples of vibration control and deformation estimation for structures using these optical fiber sensor systems. Among various optical fiber sensors, in this paper, two types of optical fiber sensors, Fabry-Perot Interferometer(EFPI) and Fiber Bragg Grating(FBG) sensors, are mainly dealt with. Fiber optic sensors show many advantages over conventional strain gages for the measurement of vibration and deformation of lightweight structures.

  • PDF

A Study on Dip-Pen Nanolithography Process to fabricate Two-dimensional Photonic Crystal for Planar-type Optical Biosensor (평판형 광-바이오센서용 2차원 광자결정 제작을 위한 Dip-Pen Nanolithography 공정 연구)

  • Kim Jun-Hyong;Lee Jong-Il;Lee Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.3
    • /
    • pp.267-272
    • /
    • 2006
  • Optical waveguide based on symmetric and asymmetric Mach-Zehnder interferometer(MZI) type was designed, fabricated and measured the optical characteristics for the application of biosensor. The wavelength of the input optical signal for the device was 1550 nm. And the difference of refractive index was $0.45\;{\Delta}\%$ between core and cladding of the device. The TM(Transverse Magnetic) mode optical properties of the biosensor were analyzed with the refractive index variation of gold thin film deposited for overclad. Nowadays, nano-photonic crystal structures have been paied much attention for its high optical sensitivity. There is a technique to realize the structure, which is called Dip-Pen Nanolithography(DPN) process. The process requires a nano-scale process patterning resolution and high reliability. In this paper, two dimensional nano-photonic crystal array on the surface was proposed for improving the sensitivity of optical biosensor. And the Dip-Pen Nanolithogrphy process was investigated to realize it.

Self-calibration Algorithm of Systematic Errors For Interferometer (간섭계에 있어서의 계통 오차의 자율 교정 알고리즘)

  • Ikumatsu Fujimoto;Lee Taeyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.5 s.170
    • /
    • pp.63-71
    • /
    • 2005
  • When an almost flat surface under test is measured by an interferometer, the measurement result is largely influenced by systematic errors that include geometrical errors of a reference flat surface. To determine the systematic errors of the interferometer by the conventional method that is called the three flat method, we must take the reference flat surface out from the interferometer and measure it. Because of difficulties to set the reference flat surface to the interferometer exactly and quickly, this method is not practical. On the other hand, the method that measures a surface under test with some shifts in the direction being perpendicular to the optical axis of the interferometer is studied. However, the parasitic pitching, rolling and up-down movement caused by the above shifts brings serious error to the measurement result, and the algorithm by which the influences can be eliminated is not still established. In this paper, we propose the self-calibration algorithm for determining the systematic errors that include geometrical errors of a reference flat surface by several rotation shifts and a linear shift of general surface under test, and verify by a numerical experiment that this algorithm is useful for determining the systematic errors.