• Title/Summary/Keyword: Optical Fourier transform

Search Result 268, Processing Time 0.024 seconds

An Adaptive Steganography of Optical Image using Bit-Planes and Multi-channel Characteristics

  • Kang, Jin-Suk;Jeong, Taik-Yeong T.
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.136-146
    • /
    • 2008
  • We proposed an adaptive steganography of an optical image using bit-planes and multichannel characteristics. The experiment's purpose was to compare the most popular methods used in optical steganography and to examine their advantages and disadvantages. In this paper we describe two digital methods: the first uses less significant bits(LSB) to encode hidden data, and in the other all blocks of $n{\times}n$ pixels are coded by using DCT(Digital Cosine Transformation), and two optical methods: double phase encoding and digital hologram watermarking with double binary phase encoding by using IFTA(Iterative Fourier Transform Algorithm) with phase quantization. Therefore, we investigated the complexity on bit plane and data, similarity insert information into bit planes. As a result, the proposed method increased the insertion capacity and improved the optical image quality as compared to fixing threshold and variable length method.

Iterative Fourier Transform Algorithm Based on the Segmentation of Target Image for a High-Speed Binary Spatial Light Modulator

  • Im, Yeonsu;Kim, Hwi;Hahn, Joonku
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.149-153
    • /
    • 2015
  • A digital micro-mirror device (DMD) has the potential to modulate an incident wave with high speed, and the application for holographic display has been studied by many researchers. However, the quality of reconstructed image isn't good in comparison with that from a gray-scale amplitude-only hologram since it is a binary amplitude-only spatial light modulator (SLM). In this paper, we suggest a method generating a set of binary holograms to improve the quality of the reconstructed image. Here, we are concerned with the case for which the object plane is positioned at the Fourier domain of the plane of the SLM. In this case, any point in the Fourier plane is related to all points in the hologram. So there is a chance to generate a set of binary holograms illuminated by incident wave with constant optical power. Moreover, we find an interesting fact that the quality of reconstructed image is improved when the spatial frequency bandwidth of the binary hologram is limited. Therefore, we propose an iterative segmentation algorithm generating a set of binary holograms that are designed to be illuminated by the wave with constant optical power. The feasibility of our method is experimentally confirmed with a DMD.

New Random and Additional Phase Adjustment of Joint Transform Correlator

  • Jeong, Man-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.90-96
    • /
    • 2010
  • Joint transform correlator (JTC) has been the most suitable technique for real time pattern recognition. This paper proposes a new phase adjustment which adopts two steps of random phase adjustment in the spatial domain and additional phase adjustment in the Fourier domain. Simulated results are presented to show the optimum condition of the phase adjustment and the effect on the correlation peaks, the peak signal-to-noise ratio and the level of discrimination.

Design of phase-only diffractive pattern elements using a two-stage iterative Fourier transform algorithm (2단계 iterative Fourier transform 알고리즘을 이용한 위상형 회절무늬소자 설계)

  • 정필호;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • A two-stage iterative Fourier transform algorithm, based on hybrid input-output algorithm and new Pnoise algorithm, is used to design continuous and quantized phase-only diffractive pattern elements which produce arbitrary given intensity patterns via Fraunhofer diffraction. Numerical results for two $128\times128$ binary patterns and two grayscale patterns are compared with those of other algorithms. It is found that the algorithm yields better signal-to-noise ratio and even better uniformity with slightly lower diffraction efficiency than other algorithms. We investigated the dependence of performance on parameters used in the algorithm, size of noise region, and the number of phase levels for quantized elements. In the case of quantized phase elements, the size of noise region plays a greater role in determining the performance of the algorithm than given intensity pattern itself. tself.

  • PDF

Shift and noise tolerance encryption system using a phase-based virtual image (가상위상영상을 이용한 잡음 및 변이에 강한 암호화 시스템)

  • 서동환;조규보;신창목;박상국;김성용;김수중
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.62-63
    • /
    • 2003
  • We propose an improved image encryption and the shift-tolerance method in the Fourier space using a virtual phase image. The encrypted image is obtained by the Fourier transform of the product of a phase-encoded virtual image, not an original image, and a random phase image. We demonstrate the robustness to noise, to data loss and shift of the encrypted image or the Fourier decryption key in the proposed technique.

  • PDF

An optical object recognition system using log-polar coordinate transform of power spectrum and NJTC (파워스펙트럼의 Log-polar 좌표변환 및 NJTC를 이용한 광 물체 인식 시스템)

  • 이상이;채호병;이승현;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.178-188
    • /
    • 1996
  • In this paper, we propose a new opto-digital object recognition system which has rotation, scale, and shift invariant characteristics. The fourier power spectrum of the object image is modified to get shift invariance. The log-polar transform is used for rotation and scale invariance. And the decision of similarities is performed by nonlinear joint transform correlator (NJTC) that can control the ratio of phase and amplitude signals. Experimental verification of th eproposed optical object recognition system is presented.

  • PDF

Optical encryption and decryption technique using virtual image in frequency domain (가상 영상을 이용한 주파수 영역에서의 광학적 암호화 및 복호화 방법)

  • 서동환;조규보;박세준;김수중;김정우;노덕수
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.255-259
    • /
    • 2003
  • In this paper, we propose an improved image encryption and decryption method using a virtual image and a joint transform correlator (JTC). The encrypted image is obtained by the Fourier transform of the product of a virtual-phase image and a random-phase image, and a Fourier transform of the decrypting key generated by the proposed phase assignment rule is used as the Fourier decrypting key. Based on the solution, the original image is reconstructed using JTC in the frequency-domain. The proposed method using a virtual image, which does not contain any information from the original image, prevents the possibility of counterfeiting by unauthorized people. And also the auto-correlation terms, which are the drawback of a JTC system, contribute to reconstructing the original image rather than to disturbing its identification. But because phase-only encryptions are sensitive to noise and scratches, phase errors can be generated in fabricating the encrypted image or the Fourier decrypting key so the errors that are responsible for degradation of the quality of the reconstructed image are analyzed and the solution is demonstrated. Computer simulations show the solution, and the proposed method is very useful for JTC architecture.

A Study on the Determination of Mode Coupling Coefficient in Graded-Index Optical Fiber (Graded Index 광섬유의 Mode Coupling Coefficient 결정에 관한 연구)

  • 이호준;김병찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.2
    • /
    • pp.149-159
    • /
    • 1988
  • In this paper, the Fourier Transform is employed to solve the coupled differential equations of modal power and three equations of the mode coupling coeficient are dierived using the phasor form trial soluation. The theory of the mode coupling coefficient contains a few theories proposed by earlier authers. Also it is seen that in case the optical source is modulated by a sinusoidal function, this theory is applied as well. In experiment, the mode coupling coefficient is determinded for a multimode graded-index fiber by using the optical source, which modulated by a sinusoidal function.

  • PDF

A Spatial-domain Fourier Transform Infrared Spectrometer: Application for Analyte Measurement in Cell Culture Media

  • Jung, Byung-Jo
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.151-156
    • /
    • 2005
  • A spatial-domain Fourier Transform (FT) infrared (IR) spectrometer coupled with a PtSi Schottky­barrier IR detector plane was developed in the spectral range of $2.0-2.5{\mu}m$ for noninvasive measurement of analyte concentrations in cell culture media during cell culture processing. A key optical component of the spectrometer is a Savart plate which is a birefringent polarizer generating coherent two rays for interfering. The spectral resolution of the spectrometer was determined as $71cm^{-1}$ (${\~}0.05{\mu}m$ at $2.5{\mu}m$). Clear IR fringe patterns were imaged on the IR detector plane. The feasibility of the spectrometer for our application was investigated by measuring absorbance spectra of glucose and fetal bovine serum (FBS) which are important compounds in cell culture media. Experiment results show that the spectral quality of glucose and FBS was comparable with the standard spectra acquired with a commercial FT-IR spectrometer, presenting the feasibility of the spectrometer to perform analyte measurement in cell culture media.