• 제목/요약/키워드: Optical Fibers

검색결과 535건 처리시간 0.026초

광섬유 OTDR 센서에 의한 구조물의 변형률 측정 방법 (Structural Strain Measurement Technique Using a Fiber Optic OTDR Sensor)

  • 권일범;김치엽;유정애
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.388-399
    • /
    • 2003
  • Light losses in optical fibers are investigated by a fiber optic OTDR (Optical Time Domain Reflectometry) sensor system to develop fiber optic probes for structural strain measurement. The sensing fibers are manufactured 3 kinds of fibers: one is single mode fiber, and second is multimode fiber, and the third is low-cladding-index fiber. Fiber bending tests are performed to determine the strain sensitivity according to the strain of gage length of optical fibers. In the result of this experiments, the strain sensitivity of the single mode fiber was shown the highest value than others. The fiber optic strain probe was manufactured to verify the feasibility of the structural strain measurement. In this test, the fiber optic strain probe of the OTDR sensor could be easily made by the single mode fiber.

  • PDF

Development of Optical Fiber-based Daylighting System with Uniform Illumination

  • Ullah, Irfan;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.247-255
    • /
    • 2012
  • Daylighting has a very effective role in reducing power consumption and improving indoor environments in office buildings. Previously, it was not under consideration as a major source of renewable energy due to poor reliability in the design. Optical fiber as a transmission medium in the daylighting system demands uniform distribution of light to solve cost, heat, and efficiency issues. Therefore, this study focuses on the uniform distribution of sunlight through the fiber bundle and to the interior of the building. To this end, two efficient approaches for the fiber-based daylighting system are presented. The first approach consists of a parabolic mirror, and the second approach contains a Fresnel lens. Sunlight is captured, guided, and distributed through the concentrator, optical fibers, and lenses, respectively. At the capturing stage, uniform illumination solves the heat problem, which has critical importance in making the system cost-effective by introducing plastic optical fibers. The efficiency of the system is increased by collimated light, which helps to insert maximum light into the optical fibers. Furthermore, we find that the hybrid system of combining sunlight and light emitting diode light gives better illumination levels than that of traditional lighting systems. Simulation and experimental results have shown that the efficiency of the system is better than previous fiber-based daylighting systems.

Concentric Core Fiber Design for Optical Fiber Communication

  • Nadeem, Iram;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • 제14권3호
    • /
    • pp.163-170
    • /
    • 2016
  • Because of rapid technological advancements, increased data rate support has become the key criterion for future communication medium selection. Multimode optical fibers and multicore optical fibers are well matched to high data rate throughput requirements because of their tendency to support multiple modes through one core at a time, which results in higher data rates. Using the numerical mode solver OptiFiber, we have designed a concentric core fiber by investigating certain design parameters, namely core diameter (µm), wavelength (nm), and refractive index profile, and as a result, the number of channels, material losses, bending losses, polarization mode dispersion, and the effective nonlinear refractive index have been determined. Space division multiplexing is a promising future technology that uses few-mode fibers in parallel to form a multicore fiber. The experimental tests are conducted using the standard second window wavelength of 1,550 nm and simulated results are presented.

154kV급 전력-광복합케이블의 개발 (Development of the 154kV optical fiber incorporated power cable)

  • 류재규;유성종;전승익;조진철;최봉남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 E
    • /
    • pp.1639-1641
    • /
    • 1997
  • In this study, We developed the 154kV optical fiber incorporated power cable which is combined optical fibers with conventional 154kV power cable. Also, we developed optical unit that optical fiber is inserted in stainless tube. The optical unit was tested, and we got good results enough to safe optical fibers. Also we put the optical fiber incorporated power cable to the test of electrical characteristics and optical characteristics, we knew that the electrical characteristics were the same characteristics as conventional 154kV power cable and the transmission loss change was almost zero. The method of optical unit connection was examined.

  • PDF

Kenaf 구성 세포의 현미경적 관찰 (Microscopic Observation of Kenaf by Optical and Scanning Electron Micrograph)

  • 윤승락
    • 펄프종이기술
    • /
    • 제41권2호
    • /
    • pp.47-54
    • /
    • 2009
  • Anatomical characteristics of kenaf were investigated in transverse, radial and tangential direction by optical and scanning electron micrograph. Kenaf was made up of bast fibers, wood fibers, vessels and parenchyma cells. Bast fibers were long slender cells with different types of pits. The shape of wood fibers were in various ways and pointed at the ends. The pits were observed on the surface of bast fibers. Kenafs were diffuse and radial porous. and composed of solitary pores and two or three radial pore multiples. Various types of vessels were observed. The pits showed alternate pitting and larger diameter than other cells. Parenchyma cells were rectangular or square with different shapes of pith parenchyma cells compared to conventional types of parenchyma cells in wood. The number of pith on the surfaces were small.

Microstructuring of Optical Fibers Using a Femtosecond Laser

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul;Ryu, Jin-Chang;Kim, Jin-Tae
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.33-36
    • /
    • 2009
  • Laser ablation with femtosecond lasers is highly promising for microfabrication of materials. Also, the high peak power of femtosecond lasers could induce a multiphoton absorption to ablate transparent materials. Similar results have also been were obtained in the case of optical fibers. In this paper, we present our experimental results of femtosecond laser microstructuring of optical fiber and its applications to microelectronic components and fiber optic devices. Finally, we directly produced micro holes with femtosecond laser pulses in a single step by moving an optical fiber in a preprogrammed structure. When water was introduced into a hole drilled from the bottom surface of the optical fiber, the effects of blocking and redeposition of ablated material were greatly reduced and the aspect ratio of the depth of the hole was increased. We have presented circular and rectangular-shaped holes in optical fiber.

광시스템에서 maximum 신호 Sensing을 위한 Algorithm 설계 (Design of Algorithm for maximum Signal Sensing by Optical System)

  • 최도순
    • 한국정보전자통신기술학회논문지
    • /
    • 제3권4호
    • /
    • pp.70-75
    • /
    • 2010
  • 이 논문은 광케이블인 optical fiber를 통해 의료용 signal을 전송 할 때 porarization obtain fiber 에서 mono mode fiber로 교체되는 지점에 integrated optic인 wave conductor를 사용하여, optical signal intensity의 maximum를 sensing 하기 위한 Algorithm Brent을 설계하고 이를 검토하였다.

  • PDF

소형공작기계를 이용한 광커넥터용 V 홈 가공에 관한 연구 (A Study on Machining of A V-groove on the Optical Fiber Connector Using a Miniaturized Machine Tool)

  • 이재하;박성령;양승한;이영문
    • 한국정밀공학회지
    • /
    • 제21권5호
    • /
    • pp.38-45
    • /
    • 2004
  • As optical communication is being substituted for telecommunication, the demand of a large variety of fiber optic components is increasing. V-groove substrates, one of the module components, are used to connect optical fibers to optical planar circuits and to arrange fibers. Their applications are multi-channel optical connectors and optical waveguide fiber coupling, etc. Because these substrates are a critical part of the splitter in a multiplexer and a multi fiber connector, precise and reliable fabrication process is required. For precisely aligning core pitch between fibers, machined core pitch tolerance should be within sub-microns. Therefore, these are generally produced by state-of-the-art micro-fabrication like MEMS. However, most of the process equipment is very expensive. It is also difficult to change the process line for custom designs to meet specific requirements using various materials. For various design specifications such as different values of the V angle and low-priced process, the fabrication method should be flexible and low cost. To achieve this goal, we have suggested a miniaturized machine tool with high accuracy positioning system. Through this study, it is shown that this cutting process can be applied to produce V-groove subtracts. We also show the possibility of using a miniaturized machining system for producing small parts.