• Title/Summary/Keyword: Optical Fabrication

Search Result 1,657, Processing Time 0.041 seconds

A Study on Fabrication and Performance Evaluation of Ti:LiNbO3 Polarization Mode Controllers (Ti:LiNbO3 편광모드 조절기 제작 및 성능 평가에 관한 연구)

  • Moon, Je-Young;Jung, Hong-Sik
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.547-554
    • /
    • 2004
  • We investigated a LiNbO$_3$ based integrated-optic polarization controller with the Ti-indiffused waveguide along the z-axis utilizing the electro-optic effect. The device consists of a first quarter-wave (λ / 4) followed by a half-wave (λ / 2) and a second quarter-wave (λ / 4) wave-plate. We analyzed the amount of phase change and the transformation of the polarized mode as a function of the combination of wave-plates and of their applied voltages. The operation has been systematically measured utilizing a polarimeter and Poincare sphere. We confirmed that the fabricated device controls the transformations from any arbitrary input state of polarization (SOP) into any general output SOP.

Fabrication and Characterization of Two-dimensional Fiber-optic Radiation Sensor for High Energy Photon Beam Therapy Dosimetry (고 에너지 광자선 계측용 2차원 광섬유 방사선 센서의 제작 및 특성분석)

  • Jang, Kyoung-Won;Cho, Dong-Hyun;Shin, Sang-Hun;Kim, Hyung-Shik;Yi, Jeong-Han;Lee, Bong-Soo;Kim, Sin;Cho, Hyo-Sung
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.241-245
    • /
    • 2007
  • In this study, a two-dimensional fiber-optic radiation sensor has been developed using water-equivalent organic scintillators for photon beam therapy dosimetry. Two-dimensional photon beam distributions and percent depth doses(PDD) are measured according to the energies and field sizes of the photon beam. This sensor has many advantages such as high resolution, real-time measurement and ease of calibration over conventional radiation measurement devices.

Testing of a Convex Aspheric Secondary Mirror for the Cassegrain Telescope (카세그레인 망원경의 볼록비구면 반사경 파면오차 측정)

  • Kim, Goeun;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.290-294
    • /
    • 2017
  • The Cassegrain telescope consists of a primary concave mirror and a secondary convex mirror. In the case of a secondary mirror, it is more difficult to test wavefront error than for a primary mirror, because it reflects the entire testing beam, as it is convex in shape. In this paper we tested the wavefront error of a complex aspheric convex secondary mirror by using the Simpson-Oland-Meckel Hindle test. To separate the systematic errors, such as fabrication error and alignment error of a meniscus lens, we adopted the QN absolute test (pixel-based absolute test using the quasi-Newton method) as well. Finally, we compared the measured result with that of an ASI (Aspheric Stitching Interferometer) made by the QED company, which resulted in an rms difference of only 2.5 nm, showing a similar shape of astigmatism aberration.

Fabrication of Low-cost and Flexible Potassium Ion Sensors based on Screen Printing and Their Electrochemical Characteristics (스크린 프린팅 기반 저가형의 플렉서블 칼륨 이온 센서 제조 및 이의 전기화학적 특성)

  • Son, Seon Gyu;Park, Hong Jun;Kim, Yeong Kyun;Cho, Hyeon-Sang;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.737-741
    • /
    • 2019
  • A low-cost and flexible potassium ion (K+) sensor was fabricated through a screen-printed process. Uniform and conformal coating of conductive inks was verified by scanning electron microscopy and optical microscopy measurements. The K+-sensors showed a high sensitivity, fast response time, and low detection limit. The sensitivity of K+-sensor was similar to that of both mechanically normal and bent states. The K+-sensor exhibited a good reproducibility with no hysteresis effect and excellent long term stability. In addition, the K+-sensor showed an excellent selectivity for K+ concentrations in the presence of other interfering cation ions. Successful measurements of K+ concentrations in sports drink samples were demonstrated by comparing K+ concentration values from K+-sensor to those of using a commercial K+-meter.

A Disposable Grating-Integrated Multi-channel SPR Sensor Chip for Detection of Biomolecule (회절격자가 집적된 일회용 다중채널 SPR 생체분자 검출 칩)

  • Jin, Young-Hyun;Cho, Young-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.147-154
    • /
    • 2009
  • This paper presents a grating~integrated SPR (Surface Plasmon Resonance) sensor chip for simple and inexpensive biomolecule detection. The grating-integrated SPR sensor chip has two sensing channels having a nano grating for SPR coupling. An external mirror is used for multi channel SPR sensing. The present sensor chip replaces bulky and expensive optical components, such as fiber-optic switches or special shaped prisms, resulting in a simple and inexpensive wavelength modulated multi-channel SPR sensing system. We fabricate a SPR sensor chip integrated with 835 nm-pitch gratings by a micromolding technique to reduce the fabrication cost. In the experimental characterization, the refractive index sensitivity of each sensing channel is measured as $321.8{\pm}8.1nm$/RI and $514.3{\pm}8.lnm$/RI, respectively. 0.5uM of the target biomolecule (streptavidin) was detected by a $1.13{\pm}0.16nm$ shift of the SPR dip in the 10%-biotinylated sample channel, while the SPR dip in the reference channel for environmental perturbation monitoring remained at the same position. From the experimental results, multi-channel biomolecule detection capability of the present grating-integrated SPR sensor chip has been verified. On the basis of the preliminary experiments, we successfully measured the binding reaction rate for the $2\;nM{\sim}200\;nM$ monoclonal-antibiotin, thus verifying biomolecule concentration detectability of the present SPR sensor chip. The binding reaction rates measured from the present SPR sensor chip agredd well with those from a commercialized SPR sensor.

Growth and characterization of periodically polarity-inverted ZnO structures grown on Cr-compound buffer layers

  • Park, J.S.;Goto, T.;Hong, S.K.;Chang, J.H.;Yoon, E.;Yao, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.259-259
    • /
    • 2010
  • Periodically polarity inverted (PPI) ZnO structures on (0001) Al2O3 substrates are demonstrated by plasmas assisted molecular beam epitaxy. The patterning and re-growth methods are used to realize the PPI ZnO by employing the polarity controlling method. For the in-situ polarity controlling of ZnO films, Cr-compound buffer layers are used.[1, 2] The region with the CrN intermediate layer and the region with the Cr2O3 and Al2O3 substrate were used to grow the Zn- and O-polar ZnO films, respectively. The growth behaviors with anisotropic properties of PPI ZnO heterostructures are investigated. The periodical polarity inversion is evaluated by contrast images of piezo-response microscopy. Structural and optical interface properties of PPI ZnO are investigated by the transmission electron microcopy (TEM) and micro photoluminescence ($\mu$-PL). The inversion domain boundaries (IDBs) between the Zn and the O-polar ZnO regions were clearly observed by TEM. Moreover, the investigation of spatially resolved local photoluminescence characteristics of PPI ZnO revealed stronger excitonic emission at the interfacial region with the IDBs compared to the Zn-polar or the O-polar ZnO region. The possible mechanisms will be discussed with the consideration of the atomic configuration, carrier life time, and geometrical effects. The successful realization of PPI structures with nanometer scale period indicates the possibility for the application to the photonic band-gap structures or waveguide fabrication. The details of application and results will be discussed.

  • PDF

Enhanced Electrical Properties of Light-emitting Electrochemical Cells Based on PEDOT:PSS incorporated Ruthenium(II) Complex as a Light-emitting layer

  • Gang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyeon;Jo, Yeong-Ran;Hwang, Jong-Won;Choe, Yeong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.139-139
    • /
    • 2010
  • Ionic Transition Metal Complex based (iTMC) Light-emitting electrochemical cells (LEECs) have been drawn attention for cheap and easy-to-fabricate light-emitting device. LEEC is one of the promising candidate for next generation display and solid-state lighting applications which can cover the defects of current commercial OLEDs like complicated fabrication process and strong work-function dependent sturucture. We have investigated the performance characteristics of LEECs based on poly (3, 4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS)-incorporated transition metal complex, which is tris(2, 2'-bipyridyl)ruthenium(II) hexafluorophosphate in this study. There are advantages using conductive polymer-incorporated luminous layer to prevent light disturbance and absorbance while light-emitting process between light-emitting layer and transparent electrode like ITO. The devices were fabricated as sandwiched structure and light-emitting layer was deposited approximately 40nm thickness by spin coating and aluminum electrode was deposited using thermal evaporation process under the vacuum condition (10-3Pa). Current density and light intensity were measured using optical spectrometer, and surface morphology changes of the luminous layer were observed using XRD and AFM varying contents of PEDOT:PSS in the Ruthenium(II) complex solution. To observe enhanced ionic conductivity of PEDOT:PSS and luminous layer, space-charge-limited-currents model was introduced and it showed that the performances and stability of LEECs were improved. Main discussions are the followings. First, relationship between film thickness and performance characteristics of device was considered. Secondly, light-emitting behavior when PEDOT:PSS layer on the ITO, as a buffer, was introduced to iTMC LEECs. Finally, electrical properties including carrier mobility, current density-voltage, light intensity-voltage, response time and turn-on voltages were investigated.

  • PDF

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

Improve the Transparency of Liquid Crystal Display Using Hybrid Conductive Films Based on Carbon Nanomaterials

  • Shin, Seung Won;Kim, Ki-Beom;Jung, Yong Un;Hur, Sung-Taek;Choi, Suk-Won;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.241.2-241.2
    • /
    • 2014
  • We present highly transparent liquid crystal displays (LCDs) using hybrid films based on carbon nanomaterials, metal grid, and indium-tin-oxide (ITO) grid. Carbon based nanomaterials are used as transparent electrodes because of high transmittance. Despite of their high transmittance they have relatively high sheet resistance. To solve this problem, we applied grid and made hybrid conductive films based on carbon nanomaterials. Conventional photolithography processes were used to make a grid pattern of metal and ITO. To fabricate transparent conductive films, carbon nanotube (CNT) ink was spin coated on the grid pattern. The transparency of the conductive film was controlled by shape and size of the grid pattern and the thickness of CNT films. The optical transmittance of CNT-based hybrid films is 92.2% and sheet resistance is also reduced to $168{\Omega}/square$. These substrates were used for the fabrication of typical twisted nematic (TN) LCD cells. From the characteristics of LCD devices such as transmittance, operating voltage, voltage holding ratio our devices were comparable to those of pristine ITO substrates. The result shows that the hybrid conductive films based on carbon nanomaterials could be alternative of ITO for the highly transparent LCDs.

  • PDF

Effect of Annealing under Antimony Ambient on Structural Recovery of Plasma-damaged InSb(100) Surface

  • Seok, Cheol-Gyun;Choe, Min-Gyeong;Jeong, Jin-Uk;Park, Se-Hun;Park, Yong-Jo;Yang, In-Sang;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.203-203
    • /
    • 2014
  • Due to the electrical properties such as narrow bandgap and high carrier mobility, indium antimonide (InSb) has attracted a lot of attention recently. For the fabrication of electronic or photonic devices, an etching process is required. However, during etching process, enegetic ions can induce structural damages on the bombarded surface. Especially, InSb has a very weak binding energy between In atom and Sb stom, it can be easily damaged by impingement of ions. In the previous work, to evaluate the surface properties after Ar ion beam etching, the plasma-induced structural damage on the etched InSb(100) surface had been examined by resonant Raman spectroscopy. As a result, we demonstrated the relation between the enhanced transverse optical(TO) peak in the Raman spectrum and the ion-induced structral damage near the InSb surface. In this work, the annealing effect on the etched InSb(100) surface has investigated. Annealing process was performed at $450^{\circ}C$ for 10 minute under antimony ambient. As-etched InSb(100) surface had shown a strongly enhanced TO scattering intensity in the Raman spectrum. However, the annealing process with antimony flowing caused the intensity to recover due to the structural reordering and the reduction of antimony vacancies. It proves that the origin of enhanced TO scattering is Sb vacancies. Furthermore, it shows that etching-induced damage can be cured effectively by the following annealing process under Sb ambient.

  • PDF