• 제목/요약/키워드: Optical & Mechanical property

검색결과 137건 처리시간 0.027초

광섬유 자카드 직물의 역학적 특성 및 감성평가 (Mechanical Properties and Sensibility Evaluation of Jacquard Fabric with Optical Fiber)

  • 노의경;송병갑;김민수
    • 한국의류산업학회지
    • /
    • 제19권2호
    • /
    • pp.240-248
    • /
    • 2017
  • This study compares general jacquard fabrics and jacquard fabrics with optical fiber on mechanical properties, sensibility and preference evaluation of fabric for the blind. The analysis also assesses the effect of optical fiber in the evaluation and identifies those best suited for consumers. The mechanical properties of jacquard fabrics were measured by the KES-FB system. Sensibility and the preference of the jacquard fabric for the blind were rated on tactile sensation by women experts in their 20's and 30's. It was found that the optical fiber in jacquard fabric affected the change of mechanical properties as well as sensibility and preference. Jacquard fabric with optical fiber were softer and more transformable, while the fabrics had lower recover property by shear force and compression as well as more violent unevenness. Jacquard fabrics were also classified into three hand factors of surface property, resilience and weightiness. There were significant differences on surface property perceptions and weightiness, hand and blind preferences by optical fiber. Jacquard fabrics that contained optical fiber were not preferred by the blind because they were perceived to be uneven and heavy. Those, that were smooth and light, were preferred for jacquard fabric; in addition, fabrics preferred by the blind had good compression.

화학기계적 연마에 의한 리튬니오베이트의 광학 특성에 관한 연구 (Study on Optical Properties of Lithium Niobate Using CMP)

  • 정석훈;김영진;이현섭;정해도
    • 대한기계학회논문집A
    • /
    • 제33권3호
    • /
    • pp.196-200
    • /
    • 2009
  • Lithium niobate ($LN:LiNbO_3$) is a compound of niobium, lithium and oxygen. The characteristics of LN are piezoelectricity, ferroelectricity and photoelectricity, and which is widely used in surface acoustic wave (SAW). To manufacture LN devices, the LN surface should be a smooth surface and defect-free because of optical property, but the LN material is processed difficult b traditional processes such as grinding and mechanical polishing (MP) because of its brittleness. To decrease defects, chemical mechanical polishing (CMP) was applied to the LN wafer. In this study, the suitable parameters such as down force and relative velocity, were investigated for the LN CMP process To improve roughness, the LN CMP was performed using the parameters that were the highest removal rate among process parameters. And, evaluation of optical property was performed by the optical reflectance.

화학 기계적 연마에 의한 리튬 니오베이트의 광학 특성에 관한 연구 (Study on Optical Properties of Lithium niobate using Chemical Mechanical Polishing)

  • 정석훈;김영진;이현섭;정해도
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.121-122
    • /
    • 2008
  • Lithium Niobate (LN:LiNbO3) is a compound of niobium, lithium and oxygen. The characteristics of LN are piezoelectricity, ferroelectricity and photoelectricity, and which is widely used in surface acoustic wave (SAW). To manufacture LN device, the LN surface should be a smooth surface and defect-free because of optical property, but the LN material is processed difficult by traditional processes such as grinding and mechanical polishing (MP) because of its brittleness. To decrease defects, chemical mechanical polishing (CMP) was applied to the LN wafer. In this study, the suitable parameters scuh as pressure and relative velocity, were investigated for the LN CMP process. To improve roughness, the LN CMP was performed using the parameters that were the highest removal rate among process parameters. And, evaluation of optical property was performed by the optical reflectance and non-linear characteristic.

  • PDF

Stiffness Comparison of Tissue Phantoms using Optical Coherence Elastography without a Load Cell

  • Chae, Yu-Gyeong;Park, Eun-Kee;Jeon, Min Yong;Jeon, Byeong-Hwan;Ahn, Yeh-Chan
    • Current Optics and Photonics
    • /
    • 제1권1호
    • /
    • pp.17-22
    • /
    • 2017
  • Mechanical property of tissue is closely related to diseases such as breast cancer, prostate cancer, cirrhosis of the liver, and atherosclerosis. Therefore measurement of tissue mechanical property is important for a better diagnosis. Ultrasound elastography has been developed as a diagnostic modality for a number of diseases that maps mechanical property of tissue. Optical coherence elastography (OCE) has a higher spatial resolution than ultrasound elastography. OCE, therefore, could be a great help for early diagnosis. In this study, we made tissue phantoms and measured their compressive moduli with a rheometer measuring the response to applied force. Uniaxial strain of the tissue phantom was also measured with OCE by using cross-correlation of speckles and compared with the results from the rheometer. In order to compare stiffness of tissue phantoms by OCE, the applied force should be measured in addition to the strain. We, however, did not use a load cell that directly measures the applied force for each sample. Instead, we utilized one silicone film (called as reference phantom) for all OCE measurements that indirectly indicated the amount of the applied force by deformation. Therefore, all measurements were based on displacement, which was natural and effective for image-based elastography such as OCE.

고휘도 마이크로 광부품 / 모듈의 신뢰성 분석 시험 (Reliability analysis test of high brightness micro optical component and module)

  • 이낙규;이혜진;최석우;최두선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.535-536
    • /
    • 2006
  • Researches about micro technology travel lively in these days. Such many researches are concentrated in the field of materials and a process field. But properties of micro materials should be known to give results of research developed into still more. In these various material properties, reliability data such as mechanical, optical, thermal property, etc is the basic property. In this paper, it is measured that is material properties of main BLU(Back Light Unit) components in LCD(Liquid Crystal Display). The pattern shape of prism sheet, diffuser film and reflective plate are measured by variable 3D scanning equipments. It is researched which is the method to measure an optimal 3D pattern shape in each components.

  • PDF

광열유체 마이크로 부품의 신뢰성 평가를 위한 시험법에 관한 고찰 (Review on Reliability Test Method for Optical/Thermofluidic Micro Component)

  • 이낙규;나경환;최현석;한창수
    • 소성∙가공
    • /
    • 제13권3호
    • /
    • pp.242-247
    • /
    • 2004
  • Literature review on reliability test method for developing high performance optical/thermofluidic components. Since the miniaturization by the conventional mechanical process is limited to milli-structure, i.e. $10^{-3}m$, new technology for fabricating of mechanical components is needed to match cost, reliability, and integrability criteria of micro-structure. Although numbers of various researches on MEMS/MOEMS devices and components, including material characterization, design and optimization, system validation, etc., the lack of standards and specifications make the researches and developments difficult. For that reason, this paper is intended to propose the methods of reliability test for measuring the mechanical property of optical/ thermofluidic components.

유전물질의 비선형 광학 특성 (Optical nonlinearity in genetic material)

  • 박병호;전성찬
    • 정보저장시스템학회논문집
    • /
    • 제10권1호
    • /
    • pp.19-22
    • /
    • 2014
  • Optical nonlinear property is utilized to the wave generation, generating the beam at intended wavelength, and optical computing systems. The genetic material, which is the DNA with helical structure in nano-scale, is fascinating for optics communities due to artificially controllable sequence that determines the physical and chemical property. Nonlinearity of DNA was investigated by the four wave mixing experiment, which is with two incident beams located at 1550nm and 1650nm. The four output beams including incident beams are emitted from genetic material such as 1461nm and 1763nm by nonlinear characteristic. The 1461nm beam which is generated by four wave mixing phenomena was observed by optical spectrum analyzer.

부도체 방향복사면이 있는 무한 정사각관의 전도-복사열전달 (Conductive-Radiative Heat Transfer in an Infinite Square Duct with Dielectric Directional Property Wall)

  • 변기홍;임문혁
    • 대한기계학회논문집B
    • /
    • 제27권5호
    • /
    • pp.543-552
    • /
    • 2003
  • The effects of a directionally emitting and reflecting dielectric surface on the wall heat flux and medium temperature distribution are studied. The system is an infinite square duct enclosing an absorbing and emitting medium. The emissivity and reflectivity of opaque and gray wall vary with direction. Combined effect of conductive and radiative heat transfer is analyzed using finite difference and the direct discrete-ordinates method. The parameters under study are conduction to radiation parameter, optical depth, refractive index ratio. The results with directional and diffuse properties deviate each other when the conduction to radiation parameter is less than around 0.01. The wall heat flux differs fur optical thickness less than around 0.1. However, the medium temperature profiles differ for optical thickness greater than around 1. Deviations from diffuse property calculations are larger for hot wall with directional property than cold wall with directional property. As n increases from 1.5, the trend changes are observed fur refractive index ratio about n=6.10

동적 광단층 탄성영상법을 이용한 조직의 고해상도 기계적 성질 측정을 위한 예비 실험 (Preliminary Experiment for High-resolution Measurement of Tissue Mechanical Properties Using Dynamic Optical Coherence Elastography)

  • 권다영;안예찬
    • 한국광학회지
    • /
    • 제29권3호
    • /
    • pp.99-103
    • /
    • 2018
  • 동적 광단층 탄성영상법은 광 결맞음 단층촬영법을 기반으로 하여 위상차에 의해 조직의 기계적 성질 중 하나인 탄성도를 측정하기 위한 기법이다. 광 결맞음 단층촬영법은 마이켈슨 간섭계를 기반으로 한 비침습적 고해상도 단면 촬영기법이다. 본 논문에서는 광단층 탄성영상법을 생체 조직에 적용하기 전에 실행가능성을 판단하고자 강도를 쉽게 구분할 수 있는 지우개, 스펀지, 샤프심으로 샘플을 제작하여 실험을 진행하였다. 샘플에 사인파의 일정한 진동자극을 가하기 위해 압전액추에이터를 샘플의 아래쪽에 위치시켰으며 위쪽에서 광 결맞음 단층촬영법으로 스캔하였다. 깊이마다 횡방향에 대한 변형속도를 힐버트 변환하여 포락선을 검출한 후 포락선의 높낮이를 색깔로 표현하여 이미지 상에서 샘플 내의 상대적인 강도를 비교할 수 있었다. 또한, 샘플단과 참조단 사이의 간섭을 이용하는 것보다 샘플단 내의 자기간섭을 이용할 경우 변형속도 계산에 있어 장점이 있음을 제시하였다.

단파장 자외선(254 nm)에 노출된 고밀도 폴리에틸렌 수지의 카르보닐 지수(CI)와 기계적 물성 변화의 관계에 관한 연구 (A Study on the Relationship of Change of Mechanical Properties and Carbonyl Index Induced through Short-wavelength Ultraviolet Radiation (254 nm) for High Density Polyethylene)

  • 김창환;신진용
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.138-143
    • /
    • 2013
  • 화학적 열화를 빠르게 유도할 수 있는 단파장의 자외선(254 nm)을 고밀도 폴리에틸렌의 표면에 조사하여, 생성된 carbonyl band의 변화로부터 기계적 물성 변화를 예측할 수 있는 지에 대한 가능성을 연구하였다. 오랜 시간이 요구되는 자연 태양광에 의한 옥외폭로시험이나, 제논-아크 광원에 의한 광 열화 대신에 광양자 에너지가 높은 UVC 램프를 사용함으로써, 유도되는 광열화의 화학적 특성이 동일한 기계적 물성 변화를 유발하는지를 확인하는 것에 본 연구의 의미가 있다. 인장시험과 크리프-파괴시험으로 진행된 고밀도 폴리에틸렌의 기계적 강도는 CI 변화에 유사한 양상을 보였으며, 특히 항복강도와 신장률은 자외선 노출시간과 밀접한 관계가 있음을 보여주었다. 따라서 빠른 표면 열화를 유발하는 UVC 램프를 활용한 카르보닐 지수와 기계적 물성 변화의 관계를 통하여 장시간이 요구되는 옥외에서의 기계적 물성변화를 보다 빠르게 파악할 수 있는 방법을 제시하였다.