• Title/Summary/Keyword: Optical & Electrical Simulation

Search Result 353, Processing Time 0.029 seconds

The Optical Design and Simulation Results for LED Stage Lighting System (무대조명용 LED 광학시스템 설계 및 시뮬레이션 결과)

  • Park, Kwang-Woo;Joo, Jae-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.30-36
    • /
    • 2015
  • The principle of an illumination and projection system including LED light sources for a spot type stage lighting system was presented, and its optical system was designed with optimizing parameters by the analytical methods. A dichroic mirror incorporated with an illumination system to optimizing LED source positions and to obtain the compact system. The projection system was optimized with specific constraints such as a chromatic aberration, distortion aberration and angle of incidence angles. Optimized design system has a beam angle from $10^{\circ}$ to $45^{\circ}$, and its illuminance was 4,500lux at distance of 6m on the work plane.

Optical Camera Communication Based Lateral Vehicle Position Estimation Scheme Using Angle of LED Street Lights (LED 가로등의 각도를 이용한 광카메라통신기반 횡방향 차량 위치추정 기법)

  • Jeon, Hui-Jin;Yun, Soo-Keun;Kim, Byung Wook;Jung, Sung-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.9
    • /
    • pp.1416-1423
    • /
    • 2017
  • Lane detection technology is one of the most important issues on car safety and self-driving capability of autonomous vehicle. This paper introduces an accurate lane detection scheme based on OCC(Optical Camera Communication) for moving vehicles. For lane detection of moving vehicles, the streetlights and the front camera of the vehicle were used for a transmitter and a receiver, respectively. Based on the angle information of multiple streetlights in a captured image, the distance from sidewalk can be calculated using non-linear regression analysis. Simulation results show that the proposed scheme shows robust performance of accurate lane detection.

A Study on the Comparison of the Optical Design of LED Prism Luminaires from Lighting Optical Design Softwares (LED 프리즘 조명기구의 광학설계를 위한 조명광학설계 소프트웨어 비교 연구)

  • Kim, Yu-Sin;You, Min-Jeong;Choi, An-Seop
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.15-18
    • /
    • 2009
  • Photopia, LightTools, and ASAP are typical software for optical design of a luminaire. Through using various lighting simulation software some different results can be found under the same conditions. Therefore, the purpose of this paper is to compare simulated photometric data and values illuminance of different types of LED prism luminaires under the same conditions. Then, LED prism luminaires were divided into the linear type and the planar type. Also three kinds of prism angles were divided into $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. In addition, the reasons for such differences were analyzed.

  • PDF

Optical Characteristics of Bimetallic Silver-Gold Film Structure in Surface Plasmon Resonance Sensor Applications (표면 플라즈몬 공명 센서에서의 쌍금속 은-금 박막 구조의 광학 특성)

  • Gwon, Hyuk-Rok;Lee, Seong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.156-160
    • /
    • 2007
  • Surface plasmon resonance(SPR) has been widely studied for biological and chemical sensing applications. The present study conducts numerical simulation for the single and bimetallic layer SPR configurations by using the multiple beam interference matrix(MBIM) method to investigate the influence of wave interference and complex refractive indices of materials on optical characteristics such as reflectance and optical phase shift which are used for sensing. First, calculated reflectances are compared with experimental data for validation. In addition, in the single film structures this study finds out the appropriate film thicknesses with minimum reflectance for cases of gold film and silver film. For a bimetallic silver-gold film structure, in particular, the bimetallic film thicknesses that has the minimum reflectance are found 36 nm for silver and 5 nm for gold. From the results, the use of phase shift would be useful compared to reflectance in determining the SPR configuration because the phase shift becomes more sensitive than reflectance.

Design and Fabrication of Pattern Structures of the Light Guide Plate for Enhanced Brightness of Backlight Unit (고휘도 BLU 구현을 위한 도광판 패턴 설계 및 특성 평가)

  • Bae, Chang-Hwan;Heo, Kyung Chan;Jhun, Chul Gyu;Rvu, Bong Jo;Koo, Kyung Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.2
    • /
    • pp.310-314
    • /
    • 2015
  • To improve the optical performance of the backlight unit with light guide plate(LGP), we investigated the effects of LGP patterns on the brightness and viewing angles properties of the backlight unit. We designed several patterns of LGP and calculated their optical properties by the optical simulation. The results reveal that the highest brightness and wide viewing angle was achieved with the extended-closed-polygon diffusion pattern and upper triangle prism pattern of the LGP.

Double Random Phase Encryption Based Orthogonal Encoding Technique for Color Images

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • In this paper, we propose a simple Double random phase encryption (DRPE)-based orthogonal encoding technique for color image encryption. In the proposed orthogonal encoding technique, a color image is decomposed into red, green, and blue components before encryption, and the three components are independently encrypted with DRPE using the same key in order to decrease the complexity of encryption and decryption. Then, the encrypted data are encoded with a Hadamard matrix that has the orthogonal property. The purpose of the proposed orthogonal encoding technique is to improve the security of DRPE using the same key at the cost of a little complexity. The proposed orthogonal encoder consists of simple linear operations, so that it is easy to implement. We also provide the simulation results in order to show the effects of the proposed orthogonal encoding technique.

Optical Misalignment Cancellation via Online L1 Optimization (온라인 L1 최적화를 통한 탐색기 비정렬 효과 제거 기법)

  • Kim, Jong-Han;Han, Yudeog;Whang, Ick Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1078-1082
    • /
    • 2017
  • This paper presents an L1 optimization based filtering technique which effectively eliminates the optical misalignment effects encountered in the squint guidance mode with strapdown seekers. We formulated a series of L1 optimization problems in order to separate the bias and the gradient components from the measured data, and solved them via the alternating direction method of multipliers (ADMM) and sparse matrix decomposition techniques. The proposed technique was able to rapidly detect arbitrary discontinuities and gradient changes from the measured signals, and was shown to effectively cancel the undesirable effects coming from the seeker misalignment angles. The technique was implemented on embedded flight computers and the real-time operational performance was verified via the hardware-in-the-loop simulation (HILS) tests in parallel with the automatic target recognition algorithms and the intra-red synthetic target images.

Optical and Electromagnetic Distribution of Ring-shaped Electrodeless Fluorescent Lamps (환형 무전극 램프의 광학적, 전자계적 특성)

  • 조주웅;이성진;최용성;김용갑;박대희
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.161-163
    • /
    • 2003
  • Ring-shaped electrodeless fluorescent lamp is removed the internal electrodes and heating filaments that are a light-limiting factor of conventional fluorescent lamps. The ring-shaped electrodeless lamp is intended as a high efficacy replacement for the incandescent reflector lamp in many applications. In this paper, maxwell 3D finite element analysis program (Ansoft) was used to obtain electromagnetic properties associated with the coil and nearby structures. The electromagnetic emitting properties were presented by 3D simulation software operated at 250[㎑]and some specific conditions. The optical measurement measured luminance and a temperature and an optical spectrum distribution for 10 minutes in a one minute interval at the same time.

  • PDF

Double Random Phase Encryption using Orthogonal Encoding for Multiple-Image Transmission

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.201-206
    • /
    • 2014
  • In this paper we extend double random phase encryption (DRPE) using orthogonal encoding from single-image transmission to multiple-image transmission. The orthogonal encoding for multiple images employs a larger Hadamard matrix than that for a single image, which can improve security. We provide a scheme for DRPE with an orthogonal codec, and a method for orthogonal encoding/decoding for multiple-image transmission. Finally, simulation results verify that the DRPE using orthogonal encoding for multiple images is more secure than both the conventional DRPE and the DRPE using orthogonal encoding for a single image.

Design of Metal-Slit Fresnel Lens for Enhanced Coupling Efficiency (광 결합 및 집속도 향상을 위한 금속 슬릿 프레넬 렌즈의 설계)

  • Park, Dong-Won;Jung, Young-Jin;Koo, Suk-Mo;Yu, Sun-Kyu;Park, Nam-Kyoo;Jhon, Young-Min;Lee, Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • Recently, much research has been done for to realizeing nano-scale photonic circuits based on photonic crystal, plasmonics and silicon photonics in order to overcome fundamental limits of electronic circuits. These limits include such as bottleneck of speed, and size that cannot be reduced. Even though several kinds of coupling schemes have been reported, coupling structures are still large when it is compared with the nano-scale optical circuit. In this paper, we proposed using a very thin Fresnel lens while shortening the focal length of the Fresnel lens as much as possible. We proposed, for the first time, to utilize metal slits that are able to use the optical coupling system between a nano-scale optical circuit and the standard single mode optical fiber for overcoming the limitation of focal length shortening of the Fresnel lens. Comparative study has been carried out with a FDTD simulation between normal and metal slit assisted Fresnel lens. From the result of simulation, we can achieve 65% coupling efficiency for the metal-slit Fresnel lens when the focal length of metal-slit Fresnel lens is just $4{\mu}m$. On the other hand, the coupling efficiency of the normal Fresnel lens is about 43%.