• Title/Summary/Keyword: Oprimization

Search Result 3, Processing Time 0.019 seconds

Optimization and sensitivity analysis of the humanoid robot's foot using the design of experiments (실험계획법에 의한 휴머노이드 발의 민감도 해석 및 최적화)

  • Yoon, Ji-Won;Park, Tae-Won;Jung, Sung-Pil;Park, Joong-Kyung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.933-938
    • /
    • 2007
  • These days, up-to-date humanoid robots are continuously developed. Among them, Qrio, Asimo[1,2] are famous for its unique walking technology and natural movement. These robots could show manufacturers' technological improvement and leave a good impression to the customer. In accordance with global trends, Samsung is also producing humanoid robot. The humanoid robot, however, could walk like a human compared to the industrial robot fixed in the factory. This feature could cause another dynamic effect while walking. In this paper, the robot's feet were examined to find out parameters that affect stability of the humanoid robot's feet. With the sensitivity analysis, the optimization procedure in design of experiments finds the most suitable performance of robot. Maximum deflection of the frame upon various cases was minimized, and rubber coefficients for shock absorption were optimized.

  • PDF

Oprimization Study for the CRC PIXE System Beam Transport Line

  • Jeong, Cheol-Ki;Lee, Goung-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Proton Induced X-ray Emission (PIXE) is a MeV ion beam analysis method for use with particle accelerators. PIXE uses low-energy charged particles as an excitation mechanism to generate characteristic x-ray emission from each element in a target. In PIXE analysis, the beam current used is from a few nA to several tens of nA. Chosun University (Cyclotron Research Center) designed a $50{\mu}A$ beam line from the 13 MeV cyclotron for use with a PIXE analysis system, as well as performing beam transport line optimization research. In this study, the beam line operation conditions for the optimization process of beam transport and beam characteristics are shown.

Image Coding using Conditional Entropy Constrained Vector Quantization (조건부 엔트로피 제한 벡터 양자화를 이용한 영상 부호화)

  • Lee, Seung-Jun;Seo, Yong-Chang;Lee, Choong-Woong
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.88-96
    • /
    • 1994
  • This paper proposes a new vector quantization scheme which exploits high correlations among indexes in vector quantization. An optimal vector quantizer in the rate-distortion sense can be obtained, if it is designed so that the average distortion can be minimized under the constraint of the conditional entropy of indes, which is usually much smaller than the entropy of index due to the high correlations among indexes of neighboring vectors. The oprimization process is very similar to that in ECVQ(entropy-constrained vector quanization) except that in the proposed scheme the Viterbi algorithm is introduced to find the optimal index sequence. Simulations show that at the same bitrate the proposed method provides higher PSNR by 1.0~3.0 dB than the conventional ECVQ when applied to image coding.

  • PDF