• Title/Summary/Keyword: Opportunistic Communication

Search Result 128, Processing Time 0.022 seconds

Performance Evaluation of Parallel Opportunistic Multihop Routing

  • Shin, Won-Yong
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.135-139
    • /
    • 2014
  • Opportunistic routing was originally introduced in various multihop network environments to reduce the number of hops in such a way that, among the relays that decode the transmitted packet for the current hop, the one that is closest to the destination becomes the transmitter for the next hop. Unlike the conventional opportunistic routing case where there is a single active S-D pair, for an ad hoc network in the presence of fading, we investigate the performance of parallel opportunistic multihop routing that is simultaneously performed by many source-destination (S-D) pairs to maximize the opportunistic gain, thereby enabling us to obtain a logarithmic gain. We first analyze a cut-set upper bound on the throughput scaling law of the network. Second, computer simulations are performed to verify the performance of the existing opportunistic routing for finite network conditions and to show trends consistent with the analytical predictions in the scaling law. More specifically, we evaluate both power and delay with respect to the number of active S-D pairs and then, numerically show a net improvement in terms of the power-delay trade-off over the conventional multihop routing that does not consider the randomness of fading.

Performance Analysis of an Opportunistic Cooperative Diversity System with Impulsive Noise in Rayleigh Fading (레일레이 페이딩하에서 임펄시브 잡음을 갖는 기회전송 협동 다이버시티 시스템의 성능해석)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.99-105
    • /
    • 2010
  • The most frequently used noise model for the performance analysis of a communication system is additive white Gaussian noise. However impulsive noise model is more practical for the real communication environments, currently the performance analysis of a communication system in impulsive noise is increasing. In this paper, therefore, the performance of a cooperative system, which is recently one of the most intensive research topics, is derived in impulsive noise. We analytically derive and compare the performance of two opportunistic cooperative diversity systems which have an amplify-and-forward (AF) relaying or a decode-and-forward (DF) relaying. It is noticed that the impulsive noise component is increases with decreasing the average number of impulses in impulsive noise, consequently the performance of two systems is degraded in high SNR region. Also it is shown that the performance of the opportunistic cooperative system with DF relaying is superior to that with AF relaying.

Channel Statistical MAC Protocol for Cognitive Radio

  • Xiang, Gao;Zhu, Wenmin;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.40-44
    • /
    • 2010
  • opportunistic spectrum access (OSA) allows unlicensed users to share licensed spectrum in space and time with no or little interference to primary users, with bring new research challenges in MAC design. We propose a cognitive MAC protocol using statistical channel information and selecting appropriate idle channel for transmission. The protocol based on the CSMA/CA, exploits statistics of spectrum usage for decision making on channel access. Idle channel availability, spectrum hole sufficiency and available channel condition will be included in algorithm statistical information. The model include the control channel and data channel, the transmitter negotiates with receiver on transmission parameters through control channel, statistical decision results (successful rate of transmission) from exchanged transmission parameters of control channel should pass the threshold and decide the data transmission with spectrum hole on data channel. A dynamical sensing range as a important parameter introduced to maintain the our protocol performance. The proposed protocol's simulation will show that proposed protocol does improve the throughput performance via traditional opportunistic spectrum access MAC protocol.

Opportunistic Scheduling with QoS Constraints for Multiclass Services HSUPA System

  • Liao, Dan;Li, Lemin
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.201-211
    • /
    • 2007
  • This paper focuses on the scheduling problem with the objective of maximizing system throughput, while guaranteeing long-term quality of service (QoS) constraints for non-realtime data users and short-term QoS constraints for realtime multimedia users in multiclass service high-speed uplink packet access (HSUPA) systems. After studying the feasible rate region for multiclass service HSUPA systems, we formulate this scheduling problem and propose a multi-constraints HSUPA opportunistic scheduling (MHOS) algorithm to solve this problem. The MHOS algorithm selects the optimal subset of users for transmission at each time slot to maximize system throughput, while guaranteeing the different constraints. The selection is made according to channel condition, feasible rate region, and user weights, which are adjusted by stochastic approximation algorithms to guarantee the different QoS constraints at different time scales. Simulation results show that the proposed MHOS algorithm guarantees QoS constraints, and achieves high system throughput.

  • PDF

Optimal Power Allocation of Opportunistic Transmission Relay Systems in Rayleigh Fading Channel (레일레이 페이딩 채널에서 기회전송 릴레이 시스템의 최적 전력 할당)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • Though the wireless ad-hoc network which is recently highly focused is power limited network, one of the main research topic is power saving. We propose a optimal power allocation strategy and derive the optimal power of the opportunistic transmission relays for minimum outage probability of the power limited network. It is shown that the proposed optimal power allocation has always better performance than that of the equal power allocation.

  • PDF

On the Performance of Incremental Opportunistic Relaying with Differential Modulation over Rayleigh Fading Channels

  • Bao, Vo Nguyen Quoc;Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7A
    • /
    • pp.731-742
    • /
    • 2010
  • We propose an incremental relaying protocol in conjunction with opportunistic communication for differential modulation with an aim to make efficient use of the degrees of freedom of the channels by exploiting a imited feedback signal from the destination. In particular, whenever the direct link from the source to the destination is not favorable to decoding, the destination will request the help from the opportunistic relay (if any). The performance of the proposed system is derived in terms of average bit error probability and achievable spectral efficiency. The analytic results show that the system assisted by the opportunistic relaying can achieve full diversity at low SNR regime and exhibits a 30㏈ gain relative to direct transmission, assuming single-antenna terminals. We also determine the effect of power allocation on the bit error probability BEP) performance of our relaying scheme. We conclude with a discussion on the relationship between the given thresholds and channel resource savings. Monte-Carlo simulations are performed to verify the analysis.

The Analysis of an Opportunistic Spectrum Access with a Strict T-preemptive Priority Discipline (엄격한 T-축출 우선순위 대기행렬을 이용한 기회 주파수 접근 방식의 성능 분석)

  • Kim, Kilhwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.4
    • /
    • pp.162-170
    • /
    • 2012
  • We propose a new priority discipline called the strict T-preemptive priority discipline, and derive the waiting time distributions of each class in the strict T-preemptive priority M/G/1 queue. Using this queueing analysis, we evaluate the performance of an opportunistic spectrum access in cognitive radio networks, where a communication channel is divided into time slots, a licensed primary user is assigned to one channel, and multiple unlicensed secondary users may opportunistically exploit time slots unused by the primary user. We also present a numerical example of the analysis of the opportunistic spectrum access where the arrival rates and service times distributions of each users are identical.

Performance Evaluation of Opportunistic Incremental Relaying Systems by using Partial and Full Channel Information in Rayleigh Fading Channels (레일레이 페이딩 채널에서 부분 및 전체 채널 정보를 이용하는 기회전송 증가 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.71-78
    • /
    • 2013
  • Recently, the opportunistic incremental relaying systems have been studied to improve the system performance effectively in wireless fading channel. Most of the performance analysis of the system includes a source-destination direct link. And there are few analysis which consider source-relay-destination indirect paths only. Therefore this paper proposes a transmission protocol which relays the source information using the selected relay from the partial channel information at the first stage in an opportunistic incremental relaying system. If the transmission fails, the selected best relay from the full channel information retransmits the information to the destination incrementally. The performance of the proposed system is derived analytically and verified from Monte Carlo simulation. The derived results can be applied to the system design and the performance estimation of the mobile systems and the bidirectional TV broadcasting systems which adapt an opportunistic incremental relaying system.

Cellular Traffic Offloading through Opportunistic Communications Based on Human Mobility

  • Li, Zhigang;Shi, Yan;Chen, Shanzhi;Zhao, Jingwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.872-885
    • /
    • 2015
  • The rapid increase of smart mobile devices and mobile applications has led to explosive growth of data traffic in cellular network. Offloading data traffic becomes one of the most urgent technical problems. Recent work has proposed to exploit opportunistic communications to offload cellular traffic for mobile data dissemination services, especially for accepting large delayed data. The basic idea is to deliver the data to only part of subscribers (called target-nodes) via the cellular network, and allow target-nodes to disseminate the data through opportunistic communications. Human mobility shows temporal and spatial characteristics and predictability, which can be used as effective guidance efficient opportunistic communication. Therefore, based on the regularity of human mobility we propose NodeRank algorithm which uses the encounter characteristics between nodes to choose target nodes. Different from the existing work which only using encounter frequency, NodeRank algorithm combined the contact time and inter-contact time meanwhile to ensure integrity and availability of message delivery. The simulation results based on real-world mobility traces show the performance advantages of NodeRank in offloading efficiency and network redundant copies.

Weighted Adaptive Opportunistic Scheduling Framework for Smartphone Sensor Data Collection in IoT

  • M, Thejaswini;Choi, Bong Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5805-5825
    • /
    • 2019
  • Smartphones are important platforms because of their sophisticated computation, communication, and sensing capabilities, which enable a variety of applications in the Internet of Things (IoT) systems. Moreover, advancements in hardware have enabled sensors on smartphones such as environmental and chemical sensors that make sensor data collection readily accessible for a wide range of applications. However, dynamic, opportunistic, and heterogeneous mobility patterns of smartphone users that vary throughout the day, which greatly affects the efficacy of sensor data collection. Therefore, it is necessary to consider phone users mobility patterns to design data collection schedules that can reduce the loss of sensor data. In this paper, we propose a mobility-based weighted adaptive opportunistic scheduling framework that can adaptively adjust to the dynamic, opportunistic, and heterogeneous mobility patterns of smartphone users and provide prioritized scheduling based on various application scenarios, such as velocity, region of interest, and sensor type. The performance of the proposed framework is compared with other scheduling frameworks in various heterogeneous smartphone user mobility scenarios. Simulation results show that the proposed scheduling improves the transmission rate by 8 percent and can also improve the collection of higher-priority sensor data compared with other scheduling approaches.