• Title/Summary/Keyword: Operational scenarios

Search Result 185, Processing Time 0.021 seconds

A Study on the Concept of Operation of Low-density Operation in Urban Air Mobility from the Perspective of an Airline (운항사 관점의 저밀도 도심항공교통 운항통제 운용개념 연구)

  • Sunghyun Jin;Heeduk Cho;Daniel Kim;Jaewoo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.201-209
    • /
    • 2024
  • This study investigates the operational facets of low-density urban air mobility (UAM) from an airline's perspective amid burgeoning concerns about urban congestion in megacities. UAM, employing electric vertical takeoff and landing (eVTOL) technology, emerges as a potential remedy to the challenges of traffic gridlock and environmental degradation. As the UAM market progresses from initial stages to maturity, tailored traffic control systems become paramount. Focused on the context of low-density environments during UAM's inception, this research scrutinizes operational frameworks, essential infrastructure, and likely scenarios. It aims to bolster the safety and efficiency of UAM operations by delving into the specifics of traffic control concepts designed for these unique settings. The study seeks to significantly contribute to optimizing UAM's initial phases, providing insights into crucial operational dynamics for a smoother integration of urban air mobility into contemporary urban landscapes.

Development of Operation Scenarios by HILS for the Energy Storage System Operated with Renewable Energy Source (HILS를 이용한 신재생 에너지원이 포함된 에너지 저장시스템의 운영 시나리오 개발)

  • Shin, Dong-Cheol;Jeon, Jee-Hwan;Park, Sung-Jin;Lee, Dong-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.2
    • /
    • pp.224-232
    • /
    • 2018
  • According to government policy, renewable energy facility such as solar power generation is being implemented for newly constructed buildings. In recent years, the introduction of Energy Storage System (ESS) served as an emergency power for replacing an existing diesel generator has been increasing. Furthermore, in order to expand the efficacy of the ESS operation, operation in combination with renewable energy sources such as solar and wind power generation is increasing. Hence, development of the ESS operation algorithms for emergency mode as well as the peak power cut mode, which is the essential feature of ESS, are necessary. The operational scenarios of ESS need to consider load power requirement and the amount of the power generation by renewable energy sources. For the verification of the developed scenarios, tests under the actual situation are demanded, but there is a difficulty in simulating the emergency operation situation such as system failure in the actual site. Therefore, this paper proposes simulation models for the HILS(Hardware In the Loop Simulation) and operation modes developed through HILS for the ESS operated with renewable energy source under peak power reduction and emergency modes. The paper shows that the ESS operation scenarios developed through HILS work properly at the actual site, and it verifies the effectiveness of the control logic developed by the HILS.

A case study on the economic feasibility of different patterns of green care and healing complexes

  • Koo, Seungmo;Kim, Dae Sik;Koo, Hee Dong;Lee, Han Joon;Park, Bum Jin;Kim, Kyoung-Chan
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.451-461
    • /
    • 2017
  • Korean agriculture has recently focused on the 6th dimension of industrialization, which includes the functions of healing and care. The green care and healing business is one of the most representative models, satisfying modern consumers' needs for care or healing in rural agricultural environments. Many studies have shown physical and social benefits from green care and healing, but studies regarding economic performance are rarely found. The present study aimed to analyze the economic feasibility of different green care and healing farm complexes proposed in recent domestic research, with various possible combinations of business scenarios. The results show that most of the scenarios are economically feasible as B/C (benefit-cost ratio) and IRR (internal rate of return) are 1.19 and 8.53%, respectively, under scenario 1. This study also performed a break-even analysis for providing more flexible decision-making information. Overall, scenario 1 from green care and healing site and scenario 4 from green care and healing cluster are found to be superior to the other scenarios in terms of B/C and IRR. The scenarios in this study reflect the domestic farms or complexes which have similar functions of care or healing. Therefore, the results of this study provide information on practical policies and business implications in making decisions on the specific size and operational patterns when adopting green care and healing complexes by central or local governments and private sectors in the future.

A Scenario based Framework for System Setup and Scheduling in Reconfigurable Manufacturing Systems (재구성형 유연가공라인을 위한 시나리오 기반 시스템 셋업 및 스케줄링 체계)

  • Lee, Dong-Ho;Kim, Ji-Su;Kim, Hyung-Won;Doh, Hyoung-Ho;Yu, Jae-Min;Nam, Sung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.339-348
    • /
    • 2011
  • Reconfigurable manufacturing system (RMS), alternatively called changeable manufacturing, is a new manufacturing paradigm designed for rapid change in hardware and software components in order to quickly adjust production capacity and functionality in response to sudden changes in market or in regulatory requirements. Although there has been much progress in hardware components during the last decade, not much work has been done on operational issues of RMS. As one of starting studies on the operational issues, we suggest a framework for the system setup and scheduling problems to cope with the reconfigurability of RMS. System setup, which includes batching, part grouping, and loading, are concerned with the pre-arrangement of parts and tools before the system begins to process, and scheduling is the problem of allocating manufacturing resources over time to perform the operations specified by system setup. The framework consists of 8 scenarios classified by three major factors: order arrival process, part selection process, and tool magazine capacity. Each of the scenarios is explained with its subproblems and their interrelationships.

The Technical Benefits of Future GNSS for Taiwan

  • Chiang, Kai-Wei;Yang, Ming;Tsai, Meng-Lun;Chang, Yao-Yun;Chu, Chi-Kuang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.3-8
    • /
    • 2006
  • The next decade promises drastic improvements and additions to global navigation satellite systems (GNSS). Plans for GPS modernization include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 MHz. Current speculations indicate that a fully operational constellation with these improvements could be available by 2013. Simultaneously, the Galileo Joint Undertaking is in the development and validation stages of introducing a parallel GNSS called Galileo. Galileo will also transmit freely available satellite navigation signals on three frequencies and is scheduled to be fully operational as early as 2008. In other words, a dual system receiver (e.g., GPS+GALILEO) for general users can access six civil frequencies transmitted by at least fifty eights navigation satellites in space. The advent of GALILEO and the modernization of GPS raise a lot of attention to the study of the compatibility and interoperability of the two systems. A number of performance analyses have been conducted in a global scale with respect to availability, reliability, accuracy and integrity in different simulated scenarios (such as open sky and urban canyons) for the two systems individually and when integrated. Therefore, the scope of this article aims at providing the technical benefits analysis for Taiwan specifically in terms of the performance indices mentioned above in a local scale, especially in typical urban canyon scenarios. The conclusions gained by this study will be applied by the Land Survey Bureau of Taiwanese as the guideline for developing future GNSS tracking facilities and dual GNSS processing module for precise surveying applications in static and kinematic modes.

  • PDF

Minimum Separation Distance Calculation for Small Unmanned Aerial Vehicles using Flight Simulation (비행 시뮬레이션을 이용한 소형 무인항공기의 최소 분리 거리 산출)

  • Junyoung Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • The utilization of small unmanned aerial vehicles (UAVs) has expanded into both military and civilian domains, increasing the necessity for research to ensure operational safety and the efficient utilization of airspace. In this study, the calculation of minimum separation distances for the safe operation of small UAVs at low altitudes was conducted. The determination of minimum separation distances requires a comprehensive analysis of the total system errors associated with small UAVs, necessitating sensitivity analysis to identify key factors contributing to flight technology errors. Flight data for small UAVs were acquired by integrating the control system of an actual small UAV with a flight simulation program. Based on this data, operational scenarios for small UAVs were established, and the minimum separation distances for each scenario were calculated. This research contributes to proposing methods for utilizing calculated minimum separation distances as crucial parameters for ensuring the safe operation of small unmanned aerial vehicles in real-world scenarios.

Improvement of Safety Approach for Accidents During Operation of LILW Disposal Facility : Application for Operational Safety Assessment of the Near-surface LILW Disposal Facility in Korea (중·저준위 방사성폐기물 처분시설의 운영 중 사고에 대한 평가체계 개선 : 한국의 중·저준위 방사성폐기물 표층처분시설의 운영 중 안전성평가 적용사례)

  • Kim, Hyun-Joo;Kim, Minseong;Park, Jin Beak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.161-172
    • /
    • 2017
  • To evaluate radiological impact from the operation of a low- and intermediate-level radioactive waste disposal facility, a logical presentation and explanation of expected accidental scenarios is essential to the stakeholders of the disposal facility. The logical assessment platform and procedure, including analysis of the safety function of disposal components, operational hazard analysis, operational risk analysis, and preparedness of remedial measures for operational safety, are improved in this study. In the operational risk analysis, both design measures and management measures are suggested to make it possible to connect among design, operation, and safety assessment within the same assessment platform. For the preparedness of logical assessment procedure, classification logic of an operational accident is suggested based on the probability of occurrence and consequences of assessment results. The improved assessment platform and procedure are applied to an operational accident analysis of the Korean low- and intermediate-level radioactive waste disposal facility and partly presented in this paper.

Emergy-Simulation Based Building Retrofit

  • Hwang, Yi
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.5-13
    • /
    • 2014
  • This paper introduces emergy(spelled with "m") that is a new environmental indicator in architecture, aiming to clarify conflicting claims of building design components in the process of energy-retrofit. Much of design practitioners' attention on low energy use in operational phases, may simply shift the lowered environmental impact within the building boundary to large consumption of energy in another area. Specifically, building energy reduction strategies without a holistic view starting from natural formation, may lead to the depletion of non-renewable geobiological sources (e.g. minerals, fossil fuels, etc.), which leaves a building with an isolated energy-efficient object. Therefore, to overcome the narrow outlook, this research discusses the total ecological impact of a building which embraces all process energy as well as environmental cost represented by emergy. A case study has been conducted to explore emergy-driven design work. In comparison with operational energy-driven scenarios, the results elucidate how energy and emergy-oriented decision-making bring about different design results, and quantify building components' emergy contribution in the end. An average-size ($101.9m^2$) single family house located in South Korea was sampled as a benchmark case, and the analysis of energy and material use was conducted for establishment of the baseline. Adoption of the small building is effective for the goal of study since this research intends to measure environmental impact according to variation of passive design elements (windows size, building orientation, wall materials) with new metric (emergy) regardless of mechanical systems. Performance simulations of operational energy were developed and analyzed separately from the calculation of emergy magnitudes in building construction, and then the total emergy demand of each proposed design was evaluated. Emergy synthesis results verify that the least operational energy scenario requires greater investment in indirect energy in construction, which clearly reveals that efficiency gains are likely to be overwhelmed by increment of material flows. This result places importance on consideration of indirect energy use underscoring necessity of emergy evaluation towards the environment-friendly building in broader sense.

Operational Effectiveness of Roundabout by the Change of Pedestrian Traffic Volume (보행교통량 변화에 따른 회전교차로의 운영효과)

  • In, Byung-Chul;Park, Min-Kyu;Park, Byung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.24-31
    • /
    • 2011
  • This study deals with the operational effectiveness of roundabout. The roundabout is currently under consideration in our country depending on the result of existing researches, that the roundabout decreases delay and is environmentally friendly compared to the signalized intersection. The purpose of the study is to analyze the operational effectiveness of the roundabout by the change of pedestrian traffic volume. In pursing the above, this study gave particular emphasis to designing a network of roundabout, developing some scenarios for analysis including both entering traffic volume and pedestrians volume, and comparatively analyzing the average controlled delay time per vehicle. In this study, VISSIM model was used as a tool for traffic simulation. The main results are as follows. First, as a result of analyzing a traffic delay based on the pedestrian traffic volume, pedestrian traffic volume was analyzed to have a great impact on the roundabout operation. Second, the more pedestrian traffic volume were evaluated to indicate the more traffic delay. When the entering volumes with 1,000persons/hour (pedestrian volume) were more than 800pcph in the single-lane and 1,600pcph in the double-lane roundabout, the operational efficiencies of signalized intersections were evaluated to be better than those of roundabouts.

A Study on the Enterprise Architecture to Develop the Requirements for Railway Safety Support information Systems (철도안전정보 지원시스템의 요구사항 개발을 위한 엔터프라이즈 아키텍처 활용 연구)

  • Lee, Byoung-Gil;Lee, Jae-Chon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.751-757
    • /
    • 2007
  • This paper is concerned with the development of the requirements for railway safety support information systems. The five safety elements at the system level have been modeled based on the enterprise architecture approach. Specifically, the modeling has been carried out as follows. First, the requirements are derived according to EIA-632 process. Also, the possible scenarios on the accident-investigation-support are developed from the help of relevant personnel in the area. The developed scenarios are reflected in modeling the operational and system architectures of DoDAF approach using a CASE tool. From this architecture model, we can easily get the specifications required for the operations. These results can give the improved understanding of the railway safety system to the members of diverse teams and areas working for the system development.