• Title/Summary/Keyword: Operational Uncertainty

Search Result 93, Processing Time 0.02 seconds

A Study on the Analysis of Container Ports' Efficiency using Uncertainty DEA model (불확실성 DEA모델을 이용한 컨테이너 항만의 효율성 분석 연구)

  • Pham, Thi-Quynh-Mai;Kim, Hwa-Young;Lee, Cheong-Hwan
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.1
    • /
    • pp.165-178
    • /
    • 2016
  • Container port nowadays becomes one of the most vital link of the transportation chain, plays an important role in trading with other countries. Therefore, evaluating the operational efficiency of container ports to reflect their status and to reveal their position in this competitive environment is very important for port development. Although there have been lots of methods used to measure efficiency in the past, the DEA (Data Envelopment Analysis) model is still the most commonly applied approach. However, the data used in the model sometimes is complex and uncertain to handle using the basic DEA model. In this paper, we applied an uncertainty theory to create an uncertainty DEA model (UDEA), which can solve the limitation of the traditional one. This study mainly focuses on measuring efficiency of 41 container ports by applying proposed an UDEA model. The results show that among 41 container ports, only six container ports are regarded to have efficient operation through the clustering, meanwhile others have technical and scale inefficiencies. We found out that an UDEA model is better to analysis efficiency than existing DEA model.

Using machine learning to forecast and assess the uncertainty in the response of a typical PWR undergoing a steam generator tube rupture accident

  • Tran Canh Hai Nguyen ;Aya Diab
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3423-3440
    • /
    • 2023
  • In this work, a multivariate time-series machine learning meta-model is developed to predict the transient response of a typical nuclear power plant (NPP) undergoing a steam generator tube rupture (SGTR). The model employs Recurrent Neural Networks (RNNs), including the Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), and a hybrid CNN-LSTM model. To address the uncertainty inherent in such predictions, a Bayesian Neural Network (BNN) was implemented. The models were trained using a database generated by the Best Estimate Plus Uncertainty (BEPU) methodology; coupling the thermal hydraulics code, RELAP5/SCDAP/MOD3.4 to the statistical tool, DAKOTA, to predict the variation in system response under various operational and phenomenological uncertainties. The RNN models successfully captures the underlying characteristics of the data with reasonable accuracy, and the BNN-LSTM approach offers an additional layer of insight into the level of uncertainty associated with the predictions. The results demonstrate that LSTM outperforms GRU, while the hybrid CNN-LSTM model is computationally the most efficient. This study aims to gain a better understanding of the capabilities and limitations of machine learning models in the context of nuclear safety. By expanding the application of ML models to more severe accident scenarios, where operators are under extreme stress and prone to errors, ML models can provide valuable support and act as expert systems to assist in decision-making while minimizing the chances of human error.

Operational modal analysis of a long-span suspension bridge under different earthquake events

  • Ni, Yi-Qing;Zhang, Feng-Liang;Xia, Yun-Xia;Au, Siu-Kui
    • Earthquakes and Structures
    • /
    • v.8 no.4
    • /
    • pp.859-887
    • /
    • 2015
  • Structural health monitoring (SHM) has gained in popularity in recent years since it can assess the performance and condition of instrumented structures in real time and provide valuable information to the asset's manager and owner. Operational modal analysis plays an important role in SHM and it involves the determination of natural frequencies, damping ratios and mode shapes of a constructed structure based on measured dynamic data. This paper presents the operational modal analysis and seismic response characterization of the Tsing Ma Suspension Bridge of 2,160 m long subjected to different earthquake events. Three kinds of events, i.e., short-distance, middle-distance and long-distance earthquakes are taken into account. A fast Bayesian modal identification method is used to carry out the operational modal analysis. The modal properties of the bridge are identified and compared by use of the field monitoring data acquired before and after the earthquake for each type of the events. Research emphasis is given on identifying the predominant modes of the seismic responses in the deck during short-distance, middle-distance and long-distance earthquakes, respectively, and characterizing the response pattern of various structural portions (deck, towers, main cables, etc.) under different types of earthquakes. Since the bridge is over 2,000 m long, the seismic wave would arrive at the tower/anchorage basements of the two side spans at different time instants. The behaviors of structural dynamic responses on the Tsing Yi side span and on the Ma Wan side span under each type of the earthquake events are compared. The results obtained from this study would be beneficial to the seismic design of future long-span bridges to be built around Hong Kong (e.g., the Hong Kong-Zhuhai-Macau Bridge).

Capacity Reservation for Due Date Promising : A Conceptual Framework

  • Seung J. Noh;Suk-Chul Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.64
    • /
    • pp.53-62
    • /
    • 2001
  • In make-to-order manufacturing, if orders are processed and promise first-served base, then the urgent orders from important customers in .practice, orders are not confirmed upon receipt; and delayed as uncertainty of due date causes significant waste of cost and time. propose a new concept of reserved capacity as an alternative to accommodate the urgent orders from important customers, while the due dale of all of orders arrival; and suggest a flew operational policies.

  • PDF

A Convergent Study on the Teacher Aide System in Special Education (특수교육보조원제도에 대한 융복학적 연구)

  • Cho, Hong-Joong;Kim, Tae-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.297-305
    • /
    • 2016
  • The purpose of this study was to suggest the operational problems and improvement methods of the teacher aide system in Korean special education. To suggest the operational problems and improvement methods of the teacher aide system in special education, annual statistics for special education, annual reports for special education, annual operational plans for special education, and the Act on Special Education for the Disabled Persons, etc. were analyzed. The operational problems of the teacher aide system in special education included (1) the uncertainty of special education teacher aide's role, (2) the lack of cooperation between teachers and special education teacher aides, and (3) the lack of a specific guideline for the management of special education teacher aides. The improvement methods included (1) the legislation of special education teacher aide's role, (2) a training system to improve special education teacher aide's professionalism, and (3) the development of a specific guideline to use and manage special education teacher aides.

Model-Based Design and Enhancement of Operational Procedure for Guided Missile Flight Test System (유도무기 비행시험 시스템을 위한 모델 기반 운용절차의 설계 및 개선)

  • Park, Woong;Lee, Jae-Chon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.479-488
    • /
    • 2019
  • The flight test operational procedure artifact includes mission planning, execution methods, and safety measures for each step of test progress. As the development of guided missiles has become more advanced and strategic, flight test has become increasingly complex and broadened. Therefore, increased reliability of the flight test operation procedures was required to ensure test safety. Particularly, the design of the flight test operational procedures required verification through M&S to predict and prepare for the uncertainty in a new test. The relevant studies have published the optimal framework development for flight tests and the model-based improvements of flight test processes, but they lacked the specificity to be applied directly to the flight test operational procedures. In addition, the flight test operational procedures, which consist of document bases, have caused problems such as limitations of analysis capabilities, insensitive expressions, and lack of scalability for the behavior and performance analysis of test resources. To improve these problems, this paper proposes how to design operational procedure of guided missile flight test system by applying MBSE(Model-based Systems Engineering). This research has improved reliability by increasing the ability to analyze the behavior and performance of test resources, and increased efficiency with the scalability applicable to multiple flight tests. That can be also used continuously for the guided missile flight tests that will be developed in the future.

Development of Methodology of New Effective Installed Reserve Rate considering Renewable Energy Generators (신재생에너지전원을 고려한 새로운 유효설비예비율 평가방법의 개발)

  • Park, Jeong-Je;Choi, Jae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new effective installed reserve rate in order to evaluate reliability of power system considering renewable generators, which include uncertainty of resource supply. It is called EIRR(effective installed reserve rate) in this paper. It is developed with considering capacity credit based on ELCC by using LOLE reliability criterion. While the conventional installed reserve rate index yields over-evaluation reliability of renewable generators, the proposed EIRR describes actual effective installed reserve rate. However, it is not the probabilistic reliability index as like as LOLE or EENS but another deterministic effective reliability index. The proposed EIRR is able to evaluate the realistic contribution to the reliability level for power system considering wind turbine generators and solar cell generators with high uncertainty in resource supply. The case study in model system as like as Jeju power system size presents a possibility that the proposed EIRR can be used practically as a new deterministic reliability index for generation expansion planning or operational planning in future.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Reliability-Based Topology Optimization for Structures with Stiffness Constraints (강성구속 조건을 갖는 구조물의 신뢰성기반 위상최적설계)

  • Kim, Sang-Rak;Park, Jae-Yong;Lee, Won-Goo;Yu, Jin-Shik;Han, Seog-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.77-82
    • /
    • 2008
  • This paper presents a Reliability-Based Topology Optimization(RBTO) using the Evolutionary Structural Optimization(ESO). An actual design involves some uncertain conditions such as material property, operational load and dimensional variation. The Deterministic Topology Optimization(DTO) is obtained without considering the uncertainties related to the uncertainty parameters. However, the RBTO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraints are satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability index approach(RIA) is adopted to evaluate the probabilistic constraints. In order to apply the ESO method to the RBTO, sensitivity number is defined as the change in the reliability index due to the removal of the ith element. Numerical examples are presented to compare the DTO with the RBTO.

Optimal Operation for Green Supply Chain Considering Demand Information, Collection Incentive and Quality of Recycling Parts

  • Watanabe, Takeshi;Kusukawa, Etsuko
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.2
    • /
    • pp.129-147
    • /
    • 2014
  • This study proposes an optimal operational policy for a green supply chain (GSC) where a retailer pays an incentive for collection of used products from customers and determines the optimal order quantity of a single product under uncertainty in product demand. A manufacturer produces the optimal order quantity of product using recyclable parts with acceptable quality levels and covers a part of the retailer's incentive from the recycled parts. Here, two scenarios for the product demand are assumed as: the distribution of product demand is known, and only both mean and variance are known. This paper develops mathematical models to find how order quantity, collection incentive of used products and lower limit of quality level for recycling affect the expected profits of each member and the whole supply chain under both a decentralized GSC (DGSC) and an integrated GSC (IGSC). The analysis numerically compares the results under DGSC with those under IGSC for each scenario of product demand. Also, the effect of the quality of the recyclable parts on the optimal decisions is shown. Moreover, supply chain coordination to shift the optimal decisions of IGSC is discussed based on: I) profit ratio, II) Nash bargaining solution, and III) Combination of (I) and (II).