• Title/Summary/Keyword: Operational Stress

Search Result 183, Processing Time 0.026 seconds

FEM Analysis of Lumbar Interbody Fusion using the Cage and Screw in Relation to Bone Mineral Density (골밀도 변화에 따른 cage와 나사를 이용한 추체간 유합술의 유한요소 해석)

  • Kim H. S.;Park J. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.525-530
    • /
    • 2004
  • Three dimensional finite element models of lumbar interbody fusion using rage and screws were constructed for the simulation of stress distribution and maximum displacement. It is also performed to investigate the efforts of osteoporosis and the location of cage on the stress distribution. It is known from the results that the increase of the strength of trabecular bone causes to decrease the stress of cortical bone and to increase the stress of trabecular bone. And it is found that the trend of stress distribution is changed by the change of location of cage and proper location of cage enhances the rate of operational success.

A Study on The Relationship between Human Errors Caused by Psychological Stress of Helicopter Pilots and Conditions of Potential Accidents and Incidents (국내 헬리콥터 조종사 정신적 스트레스에 의한 인적 오류와 잠재적 사고 및 준사고 조건 간 관계에 관한 연구)

  • Kyungjin Yum;Kyuwang Kim
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.32 no.2
    • /
    • pp.29-36
    • /
    • 2024
  • Pilots are indispensable and central to the aviation industry, with the relevance of their psychological stress and resultant human errors increasingly recognized as critical. This study aims to meticulously explore the interrelations between psychological stressors and associated factors among helicopter pilots, assessing the consequent effects on potential accidents and incidents. The study comprised active pilots from domestic helicopter airlines, with data collated through both focus group interviews (FGI) and comprehensive surveys. These data were subsequently analyzed using SPSS and AMOS for structural equation modeling. The results reveal that heightened psychological stress in helicopter pilots correlates with an increased incidence of human errors, which in turn, elevates the likelihood of potential safety incidents. Based on these findings, it is proposed that interventions designed to mitigate psychological stress among pilots could significantly reduce human errors and enhance overall aviation safety. This research provides crucial insights into specific ways to improve the operational conditions for helicopter pilots and strengthen the safety protocols within the aviation industry.

Effects of Alcohol Exposure on Ship Operational Ability (알코올이 선박운항능력에 미치는 영향)

  • Kim Hong-Tae;Yang Chan-Su;Lee Bon-Wang;Yang Young-Hoon;Kim Sun-Young
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.49-56
    • /
    • 2004
  • It has been estimated that up to $80\%$ of all marine accidents have human elements as a cause. t of these, human elements of crew fatigue is main causes of marine accident. Crew fatigue involves sleep, schedule. workload. off-time. alcohol health and stress. With a ship handling simulator, the effect of alcohol on ship operational performance is studied for each 0.05 and $0.08g\%$ blood alcohol concentrations. A main effect for alcohol was found indicating that ship operational performance was significantly impaired by this alcohol relative to performance in the non-alcohol condition. The results of this research can be applied to minimize marine accidents as basic data.

  • PDF

The operational characteristics of the AT Forward Multi-Resonant Converter (AT 포워드 다중 공진형 컨버터의 동작 특성)

  • 김창선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.114-123
    • /
    • 1998
  • The multi-resonant converter(MRC) minimizes a parasitic oscillation by using the resonant tank circuit absorbed parasitic reactances existing in a converter circuit. So it si possible that the converter operated at a high frequency has a high efficiency because the losses are reduced. Such a MHz high frequency applications provide a high power density [W/inch3] of the converter. But the resonant voltage stress across a switch of the resonant tank circuit is 4~5 times a input voltage. This h호 voltage stress increases the conduction loss because of on-resistance of a MOSFET with higher rating. Thus, in this paper we proposed the alternated multi-resonant converter (AT MRC) differ from the clamp mode multi-resonant converter and applicated it to the forward MRC. The AT forward MRC can reduce the voltage stress to 2~3 times a input voltage by using two series input capacitor. The control circuit is simple because tow resonant switches are driven directly by the output pulse of the voltage controled oscillator. This circuit type is verified through the experimental converter with 48V input voltage, 5V/50W output voltage/power and PSpice simulation. the measured maximum voltage stress is 170V of 2.9 times the input voltage and the maximum efficiency of 81.66% is measured.

  • PDF

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

Effect of Normal Operating Condition Analysis Method for Weld Residual Stress of CRDM Nozzle in Reactor Pressure Vessel (원전 정상가동조건 적용 방식이 원자로 압력용기 상부헤드 관통 노즐의 용접 잔류응력에 미치는 영향)

  • Nam, Hyun Suk;Bae, Hong Yeol;Oh, Chang Young;Kim, Ji Soo;Kim, Yun Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.9
    • /
    • pp.1159-1168
    • /
    • 2013
  • In pressurized water nuclear reactors (PWRs), the reactor pressure vessel (RPV) upper head contains penetration nozzles that use a control rod drive mechanism (CRDM). The penetration nozzle uses J-groove weld geometry. Recently, the occurrence of cracking in alloy 600 CRDM penetration nozzle has increased. This is attributable to primary water stress corrosion cracking (PWSCC). PWSCC is known to be susceptible to the welding residual stress and operational stress. Generally, the tensile residual stress is the main factor contributing to crack growth. Therefore, this study investigates the effect on weld residual stress through different analysis methods for normal operating conditions using finite element analysis. In addition, this study also considers the effect of repeated normal operating condition cycles on the weld residual stress. Based on the analysis result, this paper presents a normal operating condition analysis method.

Advanced Offshore Pipelaying Analysis techniques Part 2 : Laybarge Methods (해저 파이프라인 가설 분석 기술)

  • Choe, Han-Seok
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.7-19
    • /
    • 1995
  • Various laybarge methods for offshore pipeline installation are introduced. Pipe stresses and strains during the installation are discussed with linear and nonlinear analysis methods. Several operational modes of offshore pipeline installation are described. Computer modelling techniques of the pipeline installation analyses are suggested.

  • PDF

Effect of Boundary Conditions on Failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.873-876
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

Effect of Boundary Conditions on failure Probability of Corrosion Pipeline (부식 배관의 경계조건이 파손확률에 미치는 영향)

  • 이억섭;편장식
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2002.06a
    • /
    • pp.403-410
    • /
    • 2002
  • This paper presents the effect of internal corrosion, external corrosion, material properties, operation condition, earthquake, traffic load and design thickness in pipeline on the failure prediction using a failure probability model. A nonlinear corrosion is used to represent the loss of pipe wall thickness with time. The effects of environmental, operational, and design random variables such as a pipe diameter, earthquake, fluid pressure, a corrosion rate, a material yield stress and a pipe thickness on the failure probability are systematically investigated using a failure probability model for the corrosion pipeline.

  • PDF

High-Power-Factor Boost Rectifier with a Passive Energy Recovery Snubber (에너지재생 수동스너버를 갖는 고역율 부스트 정류기)

  • 김만고;백승호
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.428-432
    • /
    • 1998
  • A passive energy recovery snubber for high-power-factor boost rectifier, in which the main switch is implemented with a MOSFET, is described in terms of the equivalent circuits that are operational during turn-on and turn-off sequences. The main switch combined with proposed snubber can be turned on with zero current and turned off at limited voltage stress. The high-power-factor boost rectifier with proposed snubber is implemented, and the experimental results are presented to confirm the validity of proposed snubber.

  • PDF