• Title/Summary/Keyword: Operational Environment

Search Result 1,233, Processing Time 0.029 seconds

MIL-STD-810 Tailoring for Korean Peninsula and Periphery Climate (한반도 및 주변 권역 기후를 고려한 MIL-STD-810 테일러링에 대한 연구)

  • Kim, Youngrae;Hong, Yeonwoong;Kim, Donggil
    • Journal of Applied Reliability
    • /
    • v.18 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • Purpose: Environment test aim to validate the guarantee of required capability of materiel against various environment conditions which exposed during materiel life-cycle. In this paper, environment test design procedure and tailoring guideline for Korean peninsula and periphery climate are proposed. Methods: To design tailoring guideline, climate data which are regarding Korean peninsula and periphery regions provided from Korea Meteorological Administration (KMA) and National Climatic Data Center (NCDC) are used. Conclusion: For effective environment test, it is important that environment test have to design in considering environment conditions during materiel life-cycle. It is concluded that the high temperature test level can be softer than the test criteria in MIL-HDBK-310, however, the low temperature test level will be expected to be $2{\sim}6^{\circ}C$ harsher than MIL-HDBK-310.

Establishing Operational Management and Control Procedures for UAM Fleet Operators (UAM Fleet Operator 운항 관리 및 통제 절차개념 수립 연구)

  • Jeongmin Kim;Jaekyun Lee;Uwon Huh;Kyowon Song;Youngho Yoon;Yonghwan Cha
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.716-723
    • /
    • 2023
  • Global discussions are actively underway regarding the introduction of urban air mobility (UAM) to revolutionize the paradigm in the innovative mobility industry. While research related to airspace, vertiports, navigation, and communication pertinent to Korean UAM is actively pursued by relevant research institutions, there is a significant dearth in studies focusing on establishing concepts for operational management by UAM operators and formulating control procedures. The commercialization of UAM necessitates the establishment of standardized operational management concepts, pivotal as benchmarks for the individual system development among multiple UAM operators. This paper analyzes UAM exceptional law, operational readiness, existing regulations pertaining to commercial and rotary-wing aircraft, and proposes suitable approaches to formulate domestic low-density operational management and control procedures. By presenting strategies for conceptualizing operational management and control procedures in the initial low-density environment for UAM, this paper aspires to contribute to future trail operations and the wider adoption of UAM.

인공위성 단기액체 추진시스템의 열적 성능특성

  • 김정수
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.7-7
    • /
    • 1999
  • Thermal behavior of spacecraft propulsion system utilizing monopropellant hydrazine ($N_2$H$_4$) is addressed in this paper. The thermal-control performance to prevent propellant freezing in spacecraft-operational orbit was test-verified under simulated on-orbit environment. The on-orbit environment was thermally achieved in space-simulation chamber and by the absorbed-heat flux method that implements an artificial heating through to the spacecraft bus panels enclosing the propulsion system.

  • PDF

Comparative Analysis of Centralized Vs. Distributed Locality-based Repository over IoT-Enabled Big Data in Smart Grid Environment

  • Siddiqui, Isma Farah;Abbas, Asad;Lee, Scott Uk-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.75-78
    • /
    • 2017
  • This paper compares operational and network analysis of centralized and distributed repository for big data solutions in the IoT enabled Smart Grid environment. The comparative analysis clearly depicts that centralize repository consumes less memory consumption while distributed locality-based repository reduce network complexity issues than centralize repository in state-of-the-art Big Data Solution.

  • PDF

Numerical Simulation and Laboratory Test Analysis of Air Sparging for TCE Remediation

  • 김훈미;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.348-351
    • /
    • 2003
  • Trichloroethylene, which is one of the representative DNAPL, has been found in underground water sources as a result of the manufactural use, and disposal of the chemical. In this research, in situ air sparging method was chosen to reduce the TCE concentration from the source zone. The concentration reduction in the source zone resulting from air sparging is simulated using the modified STOMP Water-Air operational mode in a two dimensional axisymmetric domain and bench scale test is conducted to analyze the performance of air sparging. The results of laboratory tests are compared with numerical simulations.

  • PDF

WRF-Based Short-Range Forecast System of the Korea Air Force : Verification of Prediction Skill in 2009 Summer (WRF 기반 공군 단기 수치 예보 시스템 : 2009년 하계 모의 성능 검증)

  • Byun, Ui-Yong;Hong, Song-You;Shin, Hyeyum;Lee, Ji-Woo;Song, Jae-Ik;Hahm, Sook-Jung;Kim, Jwa-Kyum;Kim, Hyung-Woo;Kim, Jong-Suk
    • Atmosphere
    • /
    • v.21 no.2
    • /
    • pp.197-208
    • /
    • 2011
  • The objective of this study is to describe the short-range forecast system of the Korea Air Force (KAF) and to verificate its performace in 2009 summer. The KAF weather prediction model system, based on the Weather Research and Forecasting (WRF) model (i.e., the KAF-WRF), is configured with a parent domain overs East Asia and two nested domains with the finest horizontal grid size of 2 km. Each domain covers the Korean peninsula and South Korea, respectively. The model is integrated for 84 hour 4 times a day with the initial and boundary conditions from National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) data. A quantitative verification system is constructed for the East Asia and Korean peninsula domains. Verification variables for the East Asia domain are 500 hPa temperature, wind and geopotential height fields, and the skill score is calculated using the difference between the analysis data from the NCEP GFS model and the forecast data of the KAF-WRF model results. Accuracy of precipitation for the Korean penisula domain is examined using the contingency table that is made of the KAF-WRF model results and the KMA (Korea Meteorological Administraion) AWS (Automatic Weather Station) data. Using the verification system, the operational model and parallel model with updated version of the WRF model and improved physics process are quantitatively evaluated for the 2009 summer. Over the East Aisa region, the parallel experimental model shows the better performance than the operation model. Errors of the experimental model in 500 hPa geopotential height near the Tibetan plateau are smaller than errors in the operational model. Over the Korean peninsula, verification of precipitation prediction skills shows that the performance of the operational model is better than that of the experimental one in simulating light precipitation. However, performance of experimental one is generally better than that of operational one, in prediction.

A Study of the Failure Distribution and the Failure Difference by the Stress on the K-1 Tracked Vehicle (K-1전차의 고장분포와 부하에 따른 고장률 차이에 대한 연구)

  • Lee, Sang-Jin;Choi, Seok-Yoon
    • Journal of the military operations research society of Korea
    • /
    • v.35 no.2
    • /
    • pp.33-49
    • /
    • 2009
  • The objective of this study is as follows. First, the hazard function on the failure probability density function of the K-1 tracked vehicles can be occurred in the form of the bathtub curve. Second, the failure mode may be different under two different operational situations. The research result shows that the bathtub curve can be fitted in the Weibull distribution, that assumes different shapes according to the specific stage of the system's life cycle. The K-1 tracked vehicle has a relatively high hazard(failure) rate at the time of its first service. The failure rate starts decreasing for a time immediately after it goes into service. After the break-in period, the surviving components have a fairly constant hazard rate. As the K-1 system ages, deterioration of its various parts takes place and the hazard rate starts Increasing. Second, the result shows the failure rate in the harsh operational environment is higher than that in the mild operational environment. In conclusion, the bathtub curve can be logically appropriate in establishing the depot overhaul cycle. Moreover, it is necessary for determining the right time of the depot overhaul to consider not only the age of defense equipment but also the different operational environment.

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Characteristics Analysis of the Winter Precipitation by the Installation Environment for the Weighing Precipitation Gauge in Gochang (고창 지점의 강수량계 설치 환경에 따른 겨울철 강수량 관측 특성 분석)

  • Kim, Byeong Taek;Hwang, Sung Eun;Lee, Young Tae;Shin, Seung Sook;Kim, and Ki Hoon
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.514-523
    • /
    • 2021
  • Using the precipitation data observed at the Gochang Standard Weather Observatory (GSWO) during the winter seasons from 2014 to 2016, we analyzed the precipitation characteristics of the winter observation environment. For this study, we used four different types of precipitation gauges, i.e., No Shield (NS), Single Alter (SA), Double Fence Intercomparison Reference (DFIR), and Pit Gauge (PG). We analyzed the data from each to find differences in the accumulated precipitation, characteristics of the precipitation type, and the catch efficiency according to the wind speed based on the DFIR. We then classified these into three precipitation types, i.e., rain, mixed precipitation, and snow, according to temperature data from Gochang's Automated Synoptic Observing System (ASOS). We considered the DFIR to be the standard precipitation gauge for our analysis and the cumulative winter precipitation recorded by each other gauge compared to the DFIR data in the following order (from the most to least similar): SA, NS, and PG. As such, we find that the SA gauge is the most accurate when compared to the standard precipitation gauge used (DFIR), and the PG system is inappropriate for winter observations.

An Evaluation of the Collaborative Urban Environment Improvement Initiative in South Korea: A Case Study of Demolishing Walls Initiative in Daegu City (한국의 공동체 도시환경 개선사업 평가: 대구광역시 담장허물기사업을 사례로)

  • Kim Soobong
    • Journal of Environmental Science International
    • /
    • v.13 no.10
    • /
    • pp.863-870
    • /
    • 2004
  • The main objectives of this research are to analyse and evaluate the demolishing walls initiative in Daegu city as the collaborative urban environment improvement initiative in South Korea using the actor network theory concept. Local authorities are unable to effectively and efficiently improve urban environment because of their limited statutory and financial powers. This inability crucially led to the formation of the demolishing walls initiative in Daegu city with building a coalition of the local people, interest groups and public and non-governmental organisations in the operational processes in order to improve the physical and social urban environments. Furthermore, co-ordination between local authorities and landscape architecture specialists not only to change the way in which they tackle urban environmental problems but also to make the local people aware of their potential ability in positively improving the urban environment.