• Title/Summary/Keyword: Operation process

Search Result 7,182, Processing Time 0.038 seconds

DISCRETE EVENT SYSTEM SIMULATION APPROACH FOR AN OPERATION ANALYSIS OF A HEADEND PROCESS FACILITY

  • Lee, Hyo-Jik;Kim, Sung-Hyun;Park, Byung-Suk
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.739-746
    • /
    • 2009
  • This paper introduces facility operation modeling and simulation based primarily on a discrete event system modeling scheme. Many modern industrial facilities are so complex that their operational status cannot be estimated by simple calculations. In general, a facility can consist of many processes and transfers of material between processes that may be modeled as a discrete event system. This paper introduces the current status of studies on operation modeling and simulation for typical nuclear facilities, along with some examples. In addition, this paper provides insights about how a discrete event system can be applied to a model for a nuclear facility. A headend facility is chosen for operation modeling and the simulation, and detailed procedure is thoroughly described from modeling to an analysis of discrete event results. These kinds of modeling and simulation are very important because they can contribute to facility design and operation in terms of prediction of system behavior, quantification of facility capacity, bottleneck identification and efficient operation scheduling.

Examining Importance of Urban Rotorcraft Operations Using Analytic Hierarchy Process

  • Hye-Jin, Hong;Yong-og, Kim;Sungkwan, Ku
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • This study aims to determine the importance of each factor considered when operating a rotorcraft in a city. After identifying factors that could affect urban air mobility, we reviewed the influencing factors by applying an analytic hierarchy process (AHP). Level 1 classifies the essential factors of the urban operation of rotorcraft in nominal and off-nominal situations. The factors corresponding to the characteristics of each were composed of lower levels, such as Levels 2 and 3. Using this, the importance of influencing factors was analyzed and the most important factors were determined. The most influential factors of the urban operation of rotorcraft included engine failure, fire situations, and vehicle safety. Accordingly, an environment that can guarantee safe operation by considering the most influential factors in advance in an actual operation stage must be constructed.

Graphic Simulator for Analyzing the Remote Operation of the Advanced Spent Fuel Conditioning Process

  • Song, Tai-Gil;Kim, Sung-Hyun;Lee, Jong-Ryul;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1319-1322
    • /
    • 2003
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. Equipment used for such a spent fuel recycling and management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has a played a significant role in this process because of combined chemical and radiological contamination. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the graphic simulator for the ACP. The graphic simulator provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the graphic simulator, not in a real environment. The graphic simulator will substantially reduce the cost of the development of the remote handling and maintenance procedure as well as the process equipment, while at the same time producing a process and a remote maintenance concept that is more reliable, easier to implement, and easier to understand.

  • PDF

A Study on CNN based Production Yield Prediction Algorithm for Increasing Process Efficiency of Biogas Plant

  • Shin, Jaekwon;Kim, Jintae;Lee, Beomhee;Lee, Junghoon;Lee, Jisung;Jeong, Seongyeob;Chang, Soonwoong
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • Recently, as the demand for limited resources continues to rise and problems of resource depletion rise worldwide, the importance of renewable energy is gradually increasing. In order to solve these problems, various methods such as energy conservation and alternative energy development have been suggested, and biogas, which can utilize the gas produced from biomass as fuel, is also receiving attention as the next generation of innovative renewable energy. New and renewable energy using biogas is an energy production method that is expected to be possible in large scale because it can supply energy with high efficiency in compliance with energy supply method of recycling conventional resources. In order to more efficiently produce and manage these biogas, a biogas plant has emerged. In recent years, a large number of biogas plants have been installed and operated in various locations. Organic wastes corresponding to biogas production resources in a biogas plant exist in a wide variety of types, and each of the incoming raw materials is processed in different processes. Because such a process is required, the case where the biogas plant process is inefficiently operated is continuously occurring, and the economic cost consumed for the operation of the biogas production relative to the generated biogas production is further increased. In order to solve such problems, various attempts such as process analysis and feedback based on the feedstock have been continued but it is a passive method and very limited to operate a medium/large scale biogas plant. In this paper, we propose "CNN-based production yield prediction algorithm for increasing process efficiency of biogas plant" for efficient operation of biogas plant process. Based on CNN-based production yield forecasting, which is one of the deep-leaning technologies, it enables mechanical analysis of the process operation process and provides a solution for optimal process operation due to process-related accumulated data analyzed by the automated process.

Trenchless Repairing-Reinforcing Process of Underground Pipes with Advanced Composite Materials (신소재 복합재료를 이용한 비굴착 지하매설관 보수-보강공법)

  • 진우석;권재욱;이대길;유애권
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.43-48
    • /
    • 2001
  • To overcome the disadvantages of conventional excavation technology, various trenchless (or excavation free, or no-dig) repair-reinforcement technologies have been developed and tried. But trenchless technologies so fat developed have some brawbacks such as high cost and inconvenience of operation. In this study, a repairing-reinforcing process for underground pipes with glass fiber fabric polymer composites using VARTM(Vacuum Assisted Resin Transfer Molding) has been developed. The developed process requires shorter operation time and lower cost with smaller and simpler operating equipments than those of the conventional trenchless technologies. For the reliable operation of the developed method, a simple method to apply pressure and vacuum to the reinforcement was devised and flexible mold technology was tried. Also, resin filling and cure status during RTM process were monitored with a commercial dielectrometry cure monitoring system, LACOMCURE. From the investigation, it has been found that the developed repairing-reinforcing technology with appropriate process variables and on-line cure monitoring has many advantages over conventional methods.

  • PDF

An Intelligent Simulation of a Phosphoric Acid Plant (인산제조공정의 모사연구)

  • 여영구
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.167-178
    • /
    • 1994
  • For the identification of the optimal operating conditions of phosphoric acid plant, an intelligent simulation was performed based on the dissolution reaction of phosphate rock. A phosphoric acid plant consists of three main processes : ball-mill grinding process, rock reaction process and slurry filteration process. The grinding and filteration processes are relatively simple processes and most of the simulation works are on the reaction process. The practical operation data of phosphoric acid plant at Namhae Chemical Corp. were utilized in the simulation. The operation of the phosphoric acid plant is highly dependent on the heuristics of operators and so the expert system technology was employed. The operation of phosphoric acid plant varies with the origin of phosphate rock. Results of the simulation showed the optimal values of major process variables and optimal operating conditions. The knowledgebase for the expert system was constructed based on the interview with the experienced plant operators.

  • PDF

DEVELOPMENT OF AN INTEGRATED DECISION SUPPORT SYSTEM TO AID COGNITIVE ACTIVITIES OF OPERATORS

  • Lee, Seung-Jun;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.703-716
    • /
    • 2007
  • As digital and computer technologies have grown, human-machine interfaces (HMIs) have evolved. In safety-critical systems, especially in nuclear power plants (NPPs), HMIs are important for reducing operational costs, the number of necessary operators, and the probability of accident occurrence. Efforts have been made to improve main control room (MCR) interface design and to develop automated or decision support systems to ensure convenient operation and maintenance. In this paper, an integrated decision support system to aid operator cognitive processes is proposed for advanced MCRs of future NPPs. This work suggests the design concept of a decision support system which accounts for an operator's cognitive processes. The proposed system supports not only a particular task, but also the entire operation process based on a human cognitive process model. In this paper, the operator's operation processes are analyzed according to a human cognitive process model and appropriate support systems that support each cognitive process activity are suggested.

A Study on the 0.5$\mu\textrm{m}$ Dual Gate High Voltage Process for Multi Operation Applications (Multi Operation을 위한 0.5$\mu\textrm{m}$Dual Gate 고전압 공정에 관한 연구)

  • 송한정;김진수;곽계달
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.463-466
    • /
    • 2000
  • According to the development of the semiconductor micro device technology, IC chip trends the high integrated, low power tendency. Nowadays, it can be showed the tendency of single chip in system level. But in the system level, IC operates by multi power supply voltages. So, semiconductor process is necessary for these multi power operation. Therefore, in this paper, dual gate high voltage device that operate by multi power supply of 5V and 20V fabricated in the 0.5${\mu}{\textrm}{m}$ CMOS process technology and its electrical characteristics were analyzed. The result showed that the characteristics of the 5V device almost met with the SPICE simulation, the SPICE parameters are the same as the single 5V device process. And the characteristics of 20V device showed that gate length 3um device was available without degradation. Its current was 520uA/um, 350uA/um for NMOS, PMOS and the breakdown voltages were 25V, 28V.

  • PDF

Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing

  • Jung, Young-Eun;Ahn, Seong-Kyu;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.644-652
    • /
    • 2022
  • During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards of electrorefining operation was examined based on the use of machine learning for detecting off-normal operations. The off-normal operation, in this study, is defined as co-deposition of key elements through reduction on cathode. The monitored process signal selected for PM was cathode potential. The necessary data were produced through electrodeposition experiments in a laboratory molten salt system. Model-based cathodic surface area data were also generated and used to support model development. Computer models for classification were developed using a series of recurrent neural network architectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning to minimize data requirement for training. The resulting models were found to classify the normal and the off-normal operation states with a 95% accuracy. With the availability of more process data, the approach is expected to have higher reliability.

A Study on Decision-making of Equipment Procurement for Plant Operations & Maintenance (O&M) - Focused on Technology Strategy perspective - (플랜트 O&M을 위한 기자재 조달방식 의사결정에 관한 연구 - 기술전략 관점을 중심으로 -)

  • Hong, Daegeun;Lim, Yongtaek
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.15 no.1
    • /
    • pp.25-33
    • /
    • 2019
  • In the plant industry, the share of equipment accounts for 45 ~ 75%, which is very high. It is a traditional plant centered on processes and reactions like petroleum and chemical plants. Renewable energy generation plants such as wind power generation and solar power generation are equipment-centric plants. Equipment-centric plants are very important not only in the EPC phase but also in the operation and management phase. The procurement of equipment for plant operation and management can be divided into make and buy. Make is a method of producing equipment itself, and buy is a method of procuring equipment from the outside. The procurement method of the equipment directly affects the plant operation and management cost. In this study, the decision making of equipment procurement method for plant operation and management is defined as 4 phase. Each phase is selection of procurement decision-making objects, technology strategy perspective, finance perspective, and production perspective. In detail, we defined selection process of procurement decision-making objects and technology strategy perspective process. We will contribute to the enhancement of the competitiveness of the plant operation and management area by carrying out researches on the process and application examples of financial and production perspectives in the future.