• Title/Summary/Keyword: Operation layer

Search Result 1,096, Processing Time 0.034 seconds

Application of the new panel structure for high luminous efficiency in AC-PDPs

  • Kim, Jae-Sung;Jeon, Chung-Huan;Lee, Eun-Cheol;Ahn, Young-Joon;Kang, Seok-Dong;Ahn, Sung-Yong;Shin, Young-Kyo;Ryu, Jae-Hwa
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.23-24
    • /
    • 2000
  • A new PDP cell structure called CSP (Charge Storage Pad) improves the luminous efficiency by 1.6 times and prevents cross talk between adjacent cells. The CSP, which is a conducting material, is inserted between the dielectric layer and the MgO film in the front plate. This CSP produces a longer time-averaged discharge path to get a high luminous efficiency and confines the discharge to prevent cross talk.

  • PDF

ADesign and Implementation of Policy-based Network Management System for Internet QoS Support Mobile IP Networks (인터넷 QoS 지원 이동 IP 망에서의 정책기반 망 관리 시스템 설계 및 구현)

  • 김태경;강승완;유상조
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.192-202
    • /
    • 2004
  • In this paper we have proposed policy-based network management system architecture for Internet QoS support Mobile IP networks that is divided into four layers(application layer, information management layer, policy control layer, device layer), then we propose an implementation strategy of policy-based network management system to enforce various control and network management operations and a model of policy server using SCOPS(Simple Common Open Policy Service) protocol that is developed in this research. For policy-based mobile IP network management system implementation, we have derived four policy classes(access control, mobile IP operation, QoS control, and network monitoring) and we showed operation procedures for each policy scenarios. Finally we have implemented Internet QoS support policy-based mobile IP network testbed and management system and verified out DiffServ policy enforcement behaviors for a target class service that is arranged a specific bandwidth on network congestion conditions.

Electro-optical Characteristics of the Degraded Functional Layer in an Alternating- Current Plasma Display Panel

  • Lee, Kyung Ae;Min, Booki;Son, Chang Gil;Byeon, Yong S.;Yoon, Sang Ho;Choi, Eun Ha
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.232-236
    • /
    • 2015
  • The electro-optical characteristics of several functional layers over the MgO protective layer were studied during the continuous discharge of an AC-PDP. In order to observe the degradation of each functional layer on the MgO protection layer, we measured the surface morphology, cathodoluminescence (CL) spectrum, the secondary electron emission coefficient (${\gamma}$) and the discharge characteristics after 500 hours of discharge during the operation of the AC-PDP.

Atomic Layer Deposition of Vanadium Pentoxide on Carbon Electrode for Enhanced Capacitance Performance in Capacitive Deionization

  • Chung, Sangho;Bong, Sungyool;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.33 no.3
    • /
    • pp.315-321
    • /
    • 2022
  • We firstly observed that activated carbon (AC) deposited by atomic-layer vanadium pentoxide (V2O5) was used as CDI electrodes to utilize the high dielectric constant for enhancing the capacitance equipped with atomic layer deposition (ALD). It was demonstrated that the vanadium pentoxide (V2O5) with sub-nanometer layer was effectively deposited onto activated carbon, and the electric double-layer capacitance of the AC was improved due to an increase in the surface charge density originated from polarization, leading to high ion removal in CDI operation. It was confirmed that the performance of modified-AC increases more than 200%, comparable to that of pristine-AC under 1.5 V at 20 mL min-1 in CDI measurements.

Numerical Simulation for the Subsurface Temperature Distribution Disturbed by Heat-Pump Operation (지열펌프 구동에 의한 지중 온도 분포 변화 모델링 연구)

  • Shin, Ji-Youn;Bae, Gwang-Ok;Lee, Kang-Kun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.40-43
    • /
    • 2006
  • Public demand for the heat pump system as a next generation energy equipment is increasing for its eco-friendly and cost-effective advantage. Many researches have been concentrated on how to calculate and develop its own efficiency, while the possible effect of the heat pump operation on the whole subsurface temperature distribution is relatively less considered, During the current study, subsurface temperature disturbance caused by seasonal surface temperature cycle in Busan area and general W-tube heat pump operation is simulated in 3-dimensional heterogeneous medium. It shows that subsurface deeper than 10m from the surface remains nearly unchanged throughout the 4 seasons and groundwater convect ion in highly permeable layer near the surface acts like a main path of heat plume from heat pump system, This implies the significance of detail descript ion in shallow sedimentary layer or highly permeable layer which plays an important role on the regional flow advection and heat transfer. Also, the effect of groundwater convection increases when the arrangement of the 2 injection pipes and 2 extract ion well is maintained parallel to groundwater flow. Therefore, more careful and detail investigation is required before installation and operation of heat pump system that it may not cause any possible change of microbial ecosystem in the shallow subsurface environment or 'contamination of temperature' for groundwater use as well as the loss of efficiency of the equipment itself. This can also help to design the optimized grouting system for heat pump.

  • PDF

The Characteristics of Damaged Layer According to Depth of Cut in Micro Endmilling (마이크로 엔드밀링에서 가공깊이에 따른 가공변질층의 특성)

  • Lee, Jong-Hwan;Kwon, Dong-Hee;Park, Jin-Hyo;Kim, Byung-Min;Jung, Yoong-Ho;Kang, Myung-Chang;Lee, Seong-Yong;Kim, Jeong-Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.77-83
    • /
    • 2007
  • The study on damaged layer is necessary for machinability improvement in micro machining. The damaged layer in metal cutting is derived from plastic deformation and transformation of metal structure. The damaged layer affects micro mold life and micro machine parts. In this study, the damaged layer of micro machined surface of copper is evaluated according to various machining condition. The damaged layer structure and metallurgical characteristics are measured by optical microscope, and evaluated by cutting forces and surface roughness. The scale of this damaged layer depends on cutting process parameters and machining environments. By experimental results, depth of damaged layer was increased with increasing of cutting depth, also the damaged layer is less occurred in down-milling compared to up-milling during micro endmilling operation.

Automatic Layer-by-layer Dipping System for Functional Thin Film Coatings (다층박막적층법 적용 기능성 박막 코팅을 위한 자동화 시스템)

  • Jang, Wonjun;Kim, Young Seok;Park, Yong Tae
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.314-318
    • /
    • 2019
  • A simple and very flexible automatic dipping machine was constructed for producing functional multilayer films on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits several features that allow a fully automated coating operation, such as various depositing recipes, control of the dipping depth and time, operating speed, and rinsing flow, air-assist drying nozzles, and an operation display. The machine uniformly dips a substrate into aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species. Between the dipping of each species, the sample is spray cleaned with deionized water and blow-dried with air. The dipping, rinsing, and drying areas and times are adjustable by a computer program. Graphene-based thin films up to ten-bilayers were prepared and characterized. This film exhibits the highly filled multilayer structures and low thermal resistance, indicating that the robotic dipping system is simple to produce functional thin film coatings with a variety of different layers.

Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC (고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성)

  • Han, Choonsoo;Chae, Gil-Byung;Lee, Chang-Rae;Choi, Dae-Kyu;Shim, Joongpyo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.118-127
    • /
    • 2012
  • TiN or Ti/TiN was coated on stainless steel as bipolar plate in polymer electrolyte membrane fuel cells (PEMFCs) to improve their corrosion resistance and electric conductivity, and their properties were examined under fuel cell operating condition. After 200 hours operation, the behaviors for the corrosion, crack and dissolution of coating layer were investigated by various techniques. The corrosion and exfoliation of coating layer were considerably generated except for SUS316L-Ti/TiN after fuel cell operation even if the electric conductivity and corrosion resistance of coated stainless steel bipolar plates were improved. The adoption of Ti layer between TiN layer and the surface of stainless steel enhanced the adhesion of TiN layer and decreased the possibility of corrosion by the increase of coating layer.

Compact CNN Accelerator Chip Design with Optimized MAC And Pooling Layers (MAC과 Pooling Layer을 최적화시킨 소형 CNN 가속기 칩)

  • Son, Hyun-Wook;Lee, Dong-Yeong;Kim, HyungWon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.9
    • /
    • pp.1158-1165
    • /
    • 2021
  • This paper proposes a CNN accelerator which is optimized Pooling layer operation incorporated in Multiplication And Accumulation(MAC) to reduce the memory size. For optimizing memory and data path circuit, the quantized 8bit integer weights are used instead of 32bit floating-point weights for pre-training of MNIST data set. To reduce chip area, the proposed CNN model is reduced by a convolutional layer, a 4*4 Max Pooling, and two fully connected layers. And all the operations use specific MAC with approximation adders and multipliers. 94% of internal memory size reduction is achieved by simultaneously performing the convolution and the pooling operation in the proposed architecture. The proposed accelerator chip is designed by using TSMC65nmGP CMOS process. That has about half size of our previous paper, 0.8*0.9 = 0.72mm2. The presented CNN accelerator chip achieves 94% accuracy and 77us inference time per an MNIST image.

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition (Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가)

  • Im, Jinsol;Ahn, Jinhyeok;Kim, Jungmin;Sung, Shi-Joon;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.60-68
    • /
    • 2019
  • High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.