• Title/Summary/Keyword: Operation Model

Search Result 7,399, Processing Time 0.035 seconds

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.

Mixing Characteristics of Nonconservative Pollutants in Paldang Lake (팔당호에 유입된 비보존성 오염물질의 혼합거동)

  • Seo, Il Won;Choi, Nam Jeong;Jun, In Ok;Song, Chang Geun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.221-230
    • /
    • 2009
  • In Korea, many water intake plants are easily affected by effluents of sewage treatment plants because sewage treatment plants are usually located upstream or nearby the plants of the same riverine area. Furthermore, the inflow of harmful contaminants owing to pollutant spills or transportation accidents of vehicles using the roads and bridges intersecting the river causes significant impact on the management of water intake plants. Paldang lake, the main water intake plants in Korea, is especially exposed to various water pollution accidents, because the drainage basin area is significantly large compared to the water surface area of the lake. Therefore it is necessary to predict the possible pollutant spill in advance and consider measurements in case of water pollution. In this study, water quality prediction was performed in Paldang Lake in Korea durig the dry season using two-dimensional numerical models. In order to represent the cases of pollutant accidents, the difference of pollutant transport patterns with varying injection points was analyzed. Numerical simulations for hydrodynamics of water flow and water quality predictions were performed using RMA-2 and RAM4 respectively. As a result of simulation, the difference of pollutant transport with the injection points was analyzed. As a countermeasure against the pollutant accident, the augmentation of the flow rate is proposed. In comparison with the present state, the rapid dilution and flushing effects on the pollutant cloud could be expected with increase of flow rate. Thus, increase of flow rate can be used for operation of water intake plants in case of pollutant spill accidents.

Development of BIM and Augmented Reality-Based Reinforcement Inspection System for Improving Quality Management Efficiency in Railway Infrastructure (철도 인프라 품질관리 효율성 향상을 위한 BIM 기반 AR 철근 점검 시스템 구축)

  • Suk, Chaehyun;Jeong, Yujeong;Jeon, Haein;Yu, Youngsu;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.63-65
    • /
    • 2023
  • BIM and AR technologies have been assessed as a means of enhancing productivity within the construction industry, through the provision of effortless access to critical data on site, achieved via the projection of 3D models and associated information onto actual structures. However, most of the previous researches for applying AR technology in construction quality management has been performed for construction projects in general, resulting in only overall on-site management solutions. Also, a few previous researches for the application of AR in the quality management of specific elements like reinforcements focused only on simple projection, so conducting specific quality inspection was impossible. Hence, this study aimed to develop a practically applicable BIM-based AR quality management system targeted for reinforcements. For the development of this system, the reinforcement inspection items on the quality checklist used at railway construction sites were analyzed, and four types of AR functions that can effectively address these items were developed and installed. The validation result of the system for the actual railway bridge showed a degradation of projection stability. This problem was solved through model simplification and enhancement of the AR device's hardware performance, and then the normal operation of the system was validated. Subsequently, the final developed reinforcement quality inspection system was evaluated for practical applicability by on-site quality experts, and the efficiency of inspection would significantly increase when using the AR system compared to the current inspection method for reinforcements.

Modeling the Effect of Intake Depth on the Thermal Stratification and Outflow Water Temperature of Hapcheon Reservoir (취수 수심이 합천호의 수온성층과 방류 수온에 미치는 영향 모델링)

  • Sun-A Chong;Hye-Ji Kim;Hye-Suk Yi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.473-487
    • /
    • 2023
  • Korea's multi-purpose dams, which were constructed in the 1970s and 1980s, have a single outlet located near the bottom for hydropower generation. Problems such as freezing damage to crops due to cold water discharge and an increase the foggy days have been raised downstream of some dams. In this study, we analyzed the effect of water intake depth on the reservoir's water temperature stratification structure and outflow temperature targeting Hapcheon Reservoir, where hypolimnetic withdrawal is drawn via a fixed depth outlet. Using AEM3D, a three-dimensional hydrodynamic water quality model, the vertical water temperature distribution of Hapcheon Reservoir was reproduced and the seasonal water temperature stratification structure was analyzed. Simulation periods were wet and dry year to compare and analyze changes in water temperature stratification according to hydrological conditions. In addition, by applying the intake depth change scenario, the effect of water intake depth on the thermal structure was analyzed. As a result of the simulation, it was analyzed that if the hypolimnetic withdrawal is changed to epilimnetic withdrawal, the formation location of the thermocline will decrease by 6.5 m in the wet year and 6.8 m in the dry year, resulting in a shallower water depth. Additionally, the water stability indices, Schmidt Stability Index (SSI) and Buoyancy frequency (N2), were found to increase, resulting in an increase in thermal stratification strength. Changing higher withdrawal elevations, the annual average discharge water temperature increases by 3.5℃ in the wet year and by 5.0℃ in the dry year, which reduces the influence of the downstream river. However, the volume of the low-water temperature layer and the strength of the water temperature stratification within the lake increase, so the water intake depth is a major factor in dam operation for future water quality management.

Performance improvement of artificial neural network based water quality prediction model using explainable artificial intelligence technology (설명가능한 인공지능 기술을 이용한 인공신경망 기반 수질예측 모델의 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.801-813
    • /
    • 2023
  • Recently, as studies about Artificial Neural Network (ANN) are actively progressing, studies for predicting water quality of rivers using ANN are being conducted. However, it is difficult to analyze the operation process inside ANN, because ANN is form of Black-box. Although eXplainable Artificial Intelligence (XAI) is used to analyze the computational process of ANN, research using XAI technology in the field of water resources is insufficient. This study analyzed Multi Layer Perceptron (MLP) to predict Water Temperature (WT), Dissolved Oxygen (DO), hydrogen ion concentration (pH) and Chlorophyll-a (Chl-a) at the Dasan water quality observatory in the Nakdong river using Layer-wise Relevance Propagation (LRP) among XAI technologies. The MLP that learned water quality was analyzed using LRP to select the optimal input data to predict water quality, and the prediction results of the MLP learned using the optimal input data were analyzed. As a result of selecting the optimal input data using LRP, the prediction accuracy of MLP, which learned the input data except daily precipitation in the surrounding area, was the highest. Looking at the analysis of MLP's DO prediction results, it was analyzed that the pH and DO a had large influence at the highest point, and the effect of WT was large at the lowest point.

Effect of the Impeller Rotation Speed and Inert Gas Flow Rate on Degassing Rate in the A356 Aluminum Melt (임펠러 회전속도와 불활성 가스 유량이 A356 알루미늄 용탕의 탈가스 속도에 미치는 영향)

  • Hyeok-In Kwon;Hoe-Gyung Jeong;Seong-Il Jeong;Ji-Woo Park;Min-Su Kim
    • Journal of Korea Foundry Society
    • /
    • v.43 no.6
    • /
    • pp.271-278
    • /
    • 2023
  • In the present study, A356 melt degassing experiments were conducted under various impeller rotation speed and inert gas flow rate conditions to determine changes in the melt temperature, composition and density during a degassing treatment. The melt temperature was found to decrease gradually as the degassing time increased, but a clear correlation between the impeller rotation speed or inert gas flow rate and the melt heat loss could not be confirmed. Regardless of the impeller rotation speed or inert gas flow rate, the Mg and Ti contents in the A356 melt scarcely changed, even after degassing for more than 10 minutes, while Sr contents decreased at the maximum degassing rate of 70 ppm. From a quantitative analysis of the degassing rate under each experimental condition based on the hydrogen concentration in the melt derived from the melt density and the degassing model equation, the inert gas flow rate was found to affect the degassing rate rather than the impeller rotation speed under the degassing operation condition employed in the present study.

A Study on Competency Modeling of Micro Entrepreneurs Recovering From Failure (재도전 소상공인의 역량모델링에 관한 연구)

  • Im, jinhyuk;Park, Seonghee;Kim, JaeHyoung;Chae, yeonhee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.6
    • /
    • pp.71-88
    • /
    • 2022
  • The purpose of this study is to develop the competencies to help micro entrepreneurs who have experienced failure to successfully re-challenge. To this end, relevant literature published from 1977 to 2022 was analyzed, behavioral event interviews (BEI) were conducted with 7 successful micro entrepreneurs, and focus group interviews (FGI) were conducted three times by inviting competency development and HRD experts. Based on these research activities, the draft about competencies for micro entrepreneurs who had have failure was derived. And then inviting 12 experts in related field for Delphi Analysis, the final competency model that helps micro entrepreneurs successfully recover were developed as follows : Competency Groups(small business owners, recovery from failure), 8 detailed competencies(seize business opportunities, business planning, business differentiation, operation management, market exploration, research and development of products and services, positive self-regulation, overcoming and coping with failure experiences), 22 competency factors, and 72 behavioral indicators. This study has an academic significance in that it developed the competencies required for micro entrepreneurs recovering from failure. In addition, the results of this study can be used to develop a competency-based education program for micro entrepreneurs and to select suitable candidates for support programs.

Evaluation of Changes in Particle Size and Production of Sand and Cake Produced in Wet Aggregate Production Process (습식 골재 생산 공정에서 모래 및 케이크 발생량 평가)

  • Young-Wook Cheong;Jin-Young Lee;Sei-Sun Hong
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.177-184
    • /
    • 2024
  • This study was conducted to find a way to reduce the production of cakes generated in the domestic aggregate production process. Cakes from 8 wet aggregate producers were collected and particle size was analyzed. Samples were collected step by step from an aggregate producer A, particle size analysis was performed, and the material balance was calculated before and after an sand recovery unit by modeling the production process. As a result of the particle size analysis of eight cakes, one sample contained 50% sand, and the rest contained about 5% to 25% sand. The results showing that the cake contained a variety of sand in cakes may indicate that the recovery efficiency of the sand recovery units in the field varied. Sieve analysis of the samples showed that the generation of sand particles increased 2.8 times during the third crushing compared to the second crushing, and more cake particles were generated. As a result of simulating the sand recovery unit model, the lower the cut point of the cyclone and dewatering screen, the higher the sand production and the less cake production appeared. In order to reduce the production of cake in the field, it was determined that an optimal operation of the sand recovery unit was necessary in the aggregate production process.

Effectiveness of a Clinical Pathway for Breast Cancer Patients Undergoing Surgical Operation on Clinical Outcomes and Costs

  • Jeong Hyun Park;Danbee Kang;Seok Jin Nam;Jeong Eon Lee;Seok Won Kim;Jonghan Yu;Byung Joo Chae;Se Kyung Lee;Jai Min Ryu;Yeon Hee Park;Mangyeong Lee;Juhee Cho
    • Quality Improvement in Health Care
    • /
    • v.30 no.1
    • /
    • pp.120-131
    • /
    • 2024
  • Purpose: This study aimed to evaluate the impact of implementing a clinical pathways (CPs) on the clinical outcomes and costs of patients undergoing breast cancer surgery. Methods: This retrospective cohort study included patients who were newly diagnosed with primary breast cancer at the Samsung Medical Center between 2014 and 2019 (N=8482; 2931 patients in the pre-path and 5551 patients in the post-path). Clinical outcomes included reoperation during hospitalization, readmission, and emergency room visits within 30 days of discharge. The cost data for each unit were obtained from an activity-based management accounting system. We performed an interrupted time series analysis. Results: The post-path period showed a significantly shorter hospital length of stay (LOS) than the pre-path period (6.3 days in pre-path vs. 5.0 days in post-path; -1.3 days' difference; p=.001), and fewer reoperations during hospitalization and within 30 days after discharge than the pre-path period. After adjusting for inflation rates and relative value scores, the model demonstrated savings of $146 per patient in the post-path for total costs, and $537 per patient for patient out-of-pocket costs (p=.001). Conclusion: CPs can help reduce costs without compromising the quality of care by reducing the number of reoperations, readmissions, and complications.

Development and application of SW·AI education program for Digital Sprout Camp

  • Jong Hun Kim;Jae Guk Shin;Seung Bo Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.217-225
    • /
    • 2024
  • To foster the core talents of the future, the development of diverse and substantial SW·AI education programs is required, and a systematic system that can assist public education in SW and AI must be established. In this study, we develop and combine SW·AI education modules to construct a SW and AI education program applicable to public education. We also establish a systematic education system and provide sustainable SW·AI education to elementary, middle, and high school students through 'Job's Garage Camp' based on various sharing platforms. By creating a sustainable follow-up educational environment, students are encouraged to continue their self-directed learning of SW and AI. As a result of conducting a pre-post survey of students participating in the 'Job's Garage Camp', the post-survey values improved compared to the pre-survey values in all areas of 'interest', 'understanding and confidence', and 'career aspirations'. Based on these results, it can be confirmed that students had a universal positive perception and influence on SW and AI. Therefore, if the operation case of 'Job's Garage Camp' is improved and expanded, it can be presented as a standard model applicable to other SW and AI education programs in the future.