• Title/Summary/Keyword: Operation Conditions

Search Result 4,677, Processing Time 0.041 seconds

The Role of Primary Radiotherapy for Squamous Cell Carcinoma of the Suprag1ottic Larynx (성문상부 상피세포암에서의 근치적 방사선치료의 역할)

  • Kim, Won-Taek;Kim, Dong-Won;Kwon, Byung-Hyun;Nam, Ji-Ho;Hur, Won-Joo
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.233-243
    • /
    • 2000
  • Purpose : First of all, this study was performed to assess the result of curative radiotherapy and to evaluate different possible prognostic factors for squamous cell carcinoma of the supraglottic larynx treated at the Pusan National University Hospital. The second goal of this study was by comparing our data with those of other study groups, to determine the better treatment policy of supraglottic cancer in future. Methods and Material : Thirty-two patients with squamous cell carcinoma of the supraglottic larynx were treated with radiotherapy at Pusan National University Hospital, from August 1985 to December 1996. Minimum follow-up period was 29 months, Twenty-seven patients (84.4$\%$) were followed up over 5 years. Radiotherapy was delivered with 6 MV photons to the primary laryngeal tumor and regional iymphatics with shrinking field technique. Ail patients received radiotherapy under conventional fractionated schedule (once a day). Median total tumor dose was 70.2 Gy (range, 55.8 to 75.6 Gy) on primary or gross tumor lesion. Thirteen patients had Induction chemotherapy with cisplatln and 5-fluorouracil (1-3 cycles). Patient distribution, according to the different stages, were as follows: stage I, 5/32 (15.6$\%$): stage II, 10/32 (31.3$\%$); stage III, 8/32 (25$\%$): stage IV, 9/32 (28.1$\%$). Results :The 5-year overall survival rate of the whole series (32 patients) was 51.7$\%$. The overall survival rate at 5-years was 80$\%$ in stage I, 66.7$\%$ in stage II, 42.9$\%$ in stage III, 25$\%$ in stage IV (p=0.0958). The S-year local control rates after radiotherapy were as fellows: stage I, 100$\%$; stage II, 60$\%$ stage III, 62.5$\%$; stage IV, 44.4$\%$ (p=0.233). Overall vocal preservation rates was 65.6$\%$, 100% In stage I, 70% in stage II, 62.5$\%$ In stage III, 44.4$\%$ in stage IV (p=0.210). There was no statistical significance in survival and local control rate between neoadjuvant chemotherapy followed by radiotherapy group and radiotherapy alone group. Severe laryngeal edema was found in 2 cases after radiotllerapy, emergent tracheostomy was done. Four patients were died from distant metastsis, . three in lung, one in brain. Double primary tumor was found in 2 cases, one in lung (metachronous), another in thyroid (synchronous). Ulcerative lesions were revealed as unfavorable prognostic factor ( p=0.0215), and radiation dose (more or less than 70.2 Gy) was an important factor on survival (p=0.002). Conclusion : The role of radiotherapy treatment of supraglottic carcinoma is to important factor on survival and to preserve the laryngeal function. Based on our data and other studies, early and moderately advanced supragiottic carcinomas could be successfully treated with either consewative surgery or radiotherapy alone. Both modalities showed similar results in survival and vocal preservation. For the advanced cases, radiotherapy alone is Inadequate for curative aim and surgery combined with radiotherapy should be done in operable patients. When patients refuse operation or want to preserve vocal function, or for the patients with inoperable medical conditions, combined chemoradiotherapy (concurrent) or altered fractionated radiotherapy with or without radiosensitizer should be taken into consideration in future.

  • PDF

A Study for Improvement of Nursing Service Administration (병원 간호행정 개선을 위한 연구)

  • 박정호
    • Journal of Korean Academy of Nursing
    • /
    • v.3 no.1
    • /
    • pp.13-40
    • /
    • 1972
  • Much has teed changed in the field of hospital administration in the It wake of the rapid development of sciences, techniques ana systematic hospital management. However, we still have a long way to go in organization, in the quality of hospital employees and hospital equipment and facilities, and in financial support in order to achieve proper hospital management. The above factors greatly effect the ability of hospitals to fulfill their obligation in patient care and nursing services. The purpose of this study is to determine the optimal methods of standardization and quality nursing so as to improve present nursing services through investigations and analyses of various problems concerning nursing administration. This study has been undertaken during the six month period from October 1971 to March 1972. The 41 comprehensive hospitals have been selected iron amongst the 139 in the whole country. These have been categorized according-to the specific purposes of their establishment, such as 7 university hospitals, 18 national or public hospitals, 12 religious hospitals and 4 enterprise ones. The following conclusions have been acquired thus far from information obtained through interviews with nursing directors who are in charge of the nursing administration in each hospital, and further investigations concerning the purposes of establishment, the organization, personnel arrangements, working conditions, practices of service, and budgets of the nursing service department. 1. The nursing administration along with its activities in this country has been uncritical1y adopted from that of the developed countries. It is necessary for us to re-establish a new medical and nursing system which is adequate for our social environments through continuous study and research. 2. The survey shows that the 7 university hospitals were chiefly concerned with education, medical care and research; the 18 national or public hospitals with medical care, public health and charity work; the 2 religious hospitals with medical care, charity and missionary works; and the 4 enterprise hospitals with public health, medical care and charity works. In general, the main purposes of the hospitals were those of charity organizations in the pursuit of medical care, education and public benefits. 3. The survey shows that in general hospital facilities rate 64 per cent and medical care 60 per-cent against a 100 per cent optimum basis in accordance with the medical treatment law and approved criteria for training hospitals. In these respects, university hospitals have achieved the highest standards, followed by religious ones, enterprise ones, and national or public ones in that order. 4. The ages of nursing directors range from 30 to 50. The level of education achieved by most of the directors is that of graduation from a nursing technical high school and a three year nursing junior college; a very few have graduated from college or have taken graduate courses. 5. As for the career tenure of nurses in the hospitals: one-third of the nurses, or 38 per cent, have worked less than one year; those in the category of one year to two represent 24 pet cent. This means that a total of 62 per cent of the career nurses have been practicing their profession for less than two years. Career nurses with over 5 years experience number only 16 per cent: therefore the efficiency of nursing services has been rated very low. 6. As for the standard of education of the nurses: 62 per cent of them have taken a three year course of nursing in junior colleges, and 22 per cent in nursing technical high schools. College graduate nurses come up to only 15 per cent; and those with graduate course only 0.4 per cent. This indicates that most of the nurses are front nursing technical high schools and three year nursing junior colleges. Accordingly, it is advisable that nursing services be divided according to their functions, such as professional, technical nurses and nurse's aides. 7. The survey also shows that the purpose of nursing service administration in the hospitals has been regulated in writing in 74 per cent of the hospitals and not regulated in writing in 26 per cent of the hospitals. The general purposes of nursing are as follows: patient care, assistance in medical care and education. The main purpose of these nursing services is to establish proper operational and personnel management which focus on in-service education. 8. The nursing service departments belong to the medical departments in almost 60 per cent of the hospitals. Even though the nursing service department is formally separated, about 24 per cent of the hospitals regard it as a functional unit in the medical department. Only 5 per cent of the hospitals keep the department as a separate one. To the contrary, approximately 12 per cent of the hospitals have not established a nursing service department at all but surbodinate it to the other department. In this respect, it is required that a new hospital organization be made to acknowledge the independent function of the nursing department. In 76 per cent of the hospitals they have advisory committees under the nursing department, such as a dormitory self·regulating committee, an in-service education committee and a nursing procedure and policy committee. 9. Personnel arrangement and working conditions of nurses 1) The ratio of nurses to patients is as follows: In university hospitals, 1 to 2.9 for hospitalized patients and 1 to 4.0 for out-patients; in religious hospitals, 1 to 2.3 for hospitalized patients and 1 to 5.4 for out-patients. Grouped together this indicates that one nurse covers 2.2 hospitalized patients and 4.3 out-patients on a daily basis. The current medical treatment law stipulates that one nurse should care for 2.5 hospitalized patients or 30.0 out-patients. Therefore the statistics indicate that nursing services are being peformed with an insufficient number of nurses to cover out-patients. The current law concerns the minimum number of nurses and disregards the required number of nurses for operation rooms, recovery rooms, delivery rooms, new-born baby rooms, central supply rooms and emergency rooms. Accordingly, tile medical treatment law has been requested to be amended. 2) The ratio of doctors to nurses: In university hospitals, the ratio is 1 to 1.1; in national of public hospitals, 1 to 0.8; in religious hospitals 1 to 0.5; and in private hospitals 1 to 0.7. The average ratio is 1 to 0.8; generally the ideal ratio is 3 to 1. Since the number of doctors working in hospitals has been recently increasing, the nursing services have consequently teen overloaded, sacrificing the services to the patients. 3) The ratio of nurses to clerical staff is 1 to 0.4. However, the ideal ratio is 5 to 1, that is, 1 to 0.2. This means that clerical personnel far outnumber the nursing staff. 4) The ratio of nurses to nurse's-aides; The average 2.5 to 1 indicates that most of the nursing service are delegated to nurse's-aides owing to the shortage of registered nurses. This is the main cause of the deterioration in the quality of nursing services. It is a real problem in the guest for better nursing services that certain hospitals employ a disproportionate number of nurse's-aides in order to meet financial requirements. 5) As for the working conditions, most of hospitals employ a three-shift day with 8 hours of duty each. However, certain hospitals still use two shifts a day. 6) As for the working environment, most of the hospitals lack welfare and hygienic facilities. 7) The salary basis is the highest in the private university hospitals, with enterprise hospitals next and religious hospitals and national or public ones lowest. 8) Method of employment is made through paper screening, and further that the appointment of nurses is conditional upon the favorable opinion of the nursing directors. 9) The unemployment ratio for one year in 1971 averaged 29 per cent. The reasons for unemployment indicate that the highest is because of marriage up to 40 per cent, and next is because of overseas employment. This high unemployment ratio further causes the deterioration of efficiency in nursing services and supplementary activities. The hospital authorities concerned should take this matter into a jeep consideration in order to reduce unemployment. 10) The importance of in-service education is well recognized and established. 1% has been noted that on the-job nurses. training has been most active, with nursing directors taking charge of the orientation programs of newly employed nurses. However, it is most necessary that a comprehensive study be made of instructors, contents and methods of education with a separate section for in-service education. 10. Nursing services'activities 1) Division of services and job descriptions are urgently required. 81 per rent of the hospitals keep written regulations of services in accordance with nursing service manuals. 19 per cent of the hospitals do not keep written regulations. Most of hospitals delegate to the nursing directors or certain supervisors the power of stipulating service regulations. In 21 per cent of the total hospitals they have policy committees, standardization committees and advisory committees to proceed with the stipulation of regulations. 2) Approximately 81 per cent of the hospitals have service channels in which directors, supervisors, head nurses and staff nurses perform their appropriate services according to the service plans and make up the service reports. In approximately 19 per cent of the hospitals the staff perform their nursing services without utilizing the above channels. 3) In the performance of nursing services, a ward manual is considered the most important one to be utilized in about 32 percent of hospitals. 25 per cent of hospitals indicate they use a kardex; 17 per cent use ward-rounding, and others take advantage of work sheets or coordination with other departments through conferences. 4) In about 78 per cent of hospitals they have records which indicate the status of personnel, and in 22 per cent they have not. 5) It has been advised that morale among nurses may be increased, ensuring more efficient services, by their being able to exchange opinions and views with each other. 6) The satisfactory performance of nursing services rely on the following factors to the degree indicated: approximately 32 per cent to the systematic nursing activities and services; 27 per cent to the head nurses ability for nursing diagnosis; 22 per cent to an effective supervisory system; 16 per cent to the hospital facilities and proper supply, and 3 per cent to effective in·service education. This means that nurses, supervisors, head nurses and directors play the most important roles in the performance of nursing services. 11. About 87 per cent of the hospitals do not have separate budgets for their nursing departments, and only 13 per cent of the hospitals have separate budgets. It is recommended that the planning and execution of the nursing administration be delegated to the pertinent administrators in order to bring about improved proved performances and activities in nursing services.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

Depth Control and Sweeping Depth Stability of the Midwater Trawl (중층트롤의 깊이바꿈과 소해심도의 안정성)

  • 장지원
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 1973
  • For regulating the depth of midwater trawl nets towed at the optimum constant speed, the changes in the shape of warps caused by adding a weight on an arbitrary point of the warp of catenary shape is studied. The shape of a warp may be approximated by a catenary. The resultant inferences under this assumption were experimented. Accordingly feasibilities for the application of the result of this study to the midwater trawl nets were also discussed. A series of experiments for basic midwater trawl gear models in water tank and a couple of experiments of a commercial scale gears at sea which involve the properly designed depth control devices having a variable attitude horizontal wing were carried out. The results are summarized as follows: 1. According to the dimension analysis the depth y of a midwater trawl net is introduced by $$y=kLf(\frac{W_r}{R_r},\;\frac{W_o}{R_o},\;\frac{W_n}{R_n})$$) where k is a constant, L the warp length, f the function, and $W_r,\;W_o$ and $W_n$ the apparent weights of warp, otter board and the net, respectively, 2. When a boat is towing a body of apparent weight $W_n$ and its drag $D_n$ by means of a warp whose length L and apparent weight $W_r$ per unit length, the depth y of the body is given by the following equation, provided that the shape of a warp is a catenary and drag of the warp is neglected in comparison with the drag of the body: $$y=\frac{1}{W_r}\{\sqrt{{D_n^2}+{(W_n+W_rL)^2}}-\sqrt{{D_n^2+W_n}^2\}$$ 3. The changes ${\Delta}y$ of the depth of the midwater trawl net caused by changing the warp length or adding a weight ${\Delta}W_n$_n to the net, are given by the following equations: $${\Delta}y{\approx}\frac{W_n+W_{r}L}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}{\Delta}L$$ $${\Delta}y{\approx}\frac{1}{W_r}\{\frac{W_n+W_rL}{\sqrt{D_n^2+(W_n+W_{r}L)^2}}-{\frac{W_n}{\sqrt{D_n^2+W_n^2}}\}{\Delta}W_n$$ 4. A change ${\Delta}y$ of the depth of the midwater trawl net by adding a weight $W_s$ to an arbitrary point of the warp takes an equation of the form $${\Delta}y=\frac{1}{W_r}\{(T_{ur}'-T_{ur})-T_u'-T_u)\}$$ Where $$T_{ur}^l=\sqrt{T_u^2+(W_s+W_{r}L)^2+2T_u(W_s+W_{r}L)sin{\theta}_u$$ $$T_{ur}=\sqrt{T_u^2+(W_{r}L)^2+2T_uW_{r}L\;sin{\theta}_u$$ $$T_{u}^l=\sqrt{T_u^2+W_s^2+2T_uW_{s}\;sin{\theta}_u$$ and $T_u$ represents the tension at the point on the warp, ${\theta}_u$ the angle between the direction of $T_u$ and horizontal axis, $T_u^2$ the tension at that point when a weights $W_s$ adds to the point where $T_u$ is acted on. 5. If otter boards were constructed lighter and adequate weights were added at their bottom to stabilize them, even they were the same shapes as those of bottom trawls, they were definitely applicable to the midwater trawl gears as the result of the experiments. 6. As the results of water tank tests the relationship between net height of H cm velocity of v m/sec, and that between hydrodynamic resistance of R kg and the velocity of a model net as shown in figure 6 are respectively given by $$H=8+\frac{10}{0.4+v}$$ $$R=3+9v^2$$ 7. It was found that the cross-wing type depth control devices were more stable in operation than that of the H-wing type as the results of the experiments at sea. 8. The hydrodynamic resistance of the net gear in midwater trawling is so large, and regarded as nearly the drag, that sweeping depth of the gear was very stable in spite of types of the depth control devices. 9. An area of the horizontal wing of the H-wing type depth control device was $1.2{\times}2.4m^2$. A midwater trawl net of 2 ton hydrodynamic resistance was connected to the devices and towed with the velocity of 2.3 kts. Under these conditions the depth change of about 20m of the trawl net was obtained by controlling an angle or attack of $30^{\circ}$.

  • PDF

Study on the Controlling Mechaniques of the Environmental Factors in the Mushroom Growing House in Chonnam Province (전남 지방에 있어서의 양송이 재배에 최적한 환경조건 조절법 분석에 관한 연구)

  • Chung, Byung-Jae;Lee, Eun-Chol
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.32-34
    • /
    • 1974
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demonstrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental house showed a sufficient heat insulation on effect to protect insides of the house from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar house to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on ground type house, and (2) the solar heat generating system should be reconstructed properly. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom house. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that X is the outside temperature and Y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between X and Y can be expressed by the following regression lines. Underground iron pipe ventilation system. Y=0.9X-12.8 Underground earthen pipe ventilation system. Y=0.96X-15.11 Vertical side wall ventilation system. Y=0.94X-17.57 5. The experimental results have 8hown that the relationships existing between the admitted and expelled air and the $CO_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 5.1 If it is assumed that X is an air speed cm/sec. and Y is an expelled air speed in cm/sec. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below: 5.2 If it IS assumed that X is an admitted volume of air in $m^3$/hr. and Y is an expelled volume of air in $m^3$/hr. in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the regression lines shown below. 5.3 If it is assumed that expelled air speed in emisec. and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as X and Y. respectively, since the Y is a function of the X. the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV (50%) ventilation system. Y=-0.54X+0.84 5.4 If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as X, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as Y, in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following regression line: GE(100%)-CV(50%) ventilation system. Y=114.53-6.42X 5.5 If it is assumed that the expelled volume of air is shown as X and the $CO_2$ concencration which is expressed by multiplying 1000 times the actual of $CO_2$% is shown as Y in a natural ventilation system, since the Y is a function of the X, the relationships that exist between X and Y can be expressed by the following exponent equation: GE(100%)-CV(50%) ventilation system. Y=$127.18{\times}1.0093^{-x}$ 5.6 The experimental results have shown that the ratios of the cross sectional area of the GE and CV vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: GE(admitting vent of the underground ventilation) 0.3-0.5% (controllable) CV(expelling vent of the ceiling ventilation) 0.8-1.0% (controllable) 6. Among several heating devices which were studied in the experiments, the hot-water boilor which wasmodified to be fitted both as hot-water boiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF

TECHNICAL STUDY ON THE CONTROLLING MECHANIQUES OF THE ENVIRONMENTAL FACTORS IN THE MUSHROOM GROWING HOUSE IN CHONNAM PROVINCE (전남지방(全南地方)에 있어서의 양송이 재배(栽培)에 최적(最適)한 환경조건(環境條件) 조절법분석(調節法分析)에 관(關)한 연구(硏究))

  • Lee, Eun Chol
    • Journal of Korean Society of Forest Science
    • /
    • v.9 no.1
    • /
    • pp.1-44
    • /
    • 1969
  • The important results which have been obtained in the investigation can be recapitulated as follows. 1. As demostrated by the experimental results and analyses concerning their effects in the on-ground type mushroom house, the constructions in relation to the side wall and ceiling of the experimental houses showed a sufficient heat insulation on effect to protect insides of the houses from outside climatic conditions. 2. As the effect on the solar type experimental mushroom house which was constructed in a half basement has been shown by the experimental results and analyses, it has been proved to be effective for making use of solar heat. However there were found two problems to be improved for putting solar houses to practical use in the farm mushroom growing: (1) the construction of the roof and ceiling should be the same as for the on-ground type house, and (2) the solar heat generating system should be reconstructed properly. A trial solar heat generating system is shown in Fig. 40. 3. Among several ventilation systems which have been studied in the experiments, the underground earthen pipe and ceiling ventilation, and vertical side wall and ceiling ventilation systems have been proved to be most effective for natural ventilation. 4. The experimental results have shown that ventilation systems such as the vertical side wall and underground ventilation systems are suitable to put to practical use as natural ventilation systems for farm mushroom houses. These ventilation systems can remarkably improve the temperature of fresh air which is introduced into the house by heat transfers within the ventilation passages, so as to approach to the desired temperature of the house without any cooling or heating operation. For example, if it is assuming that x is the outside temperature and y is the amount of temperature adjustment made by the influence of the ventilation system, the relationships that exist between x and y can be expressed by the following regression lines. Underground iron pipe ventilation system ${\cdots}{\cdots}$ y=0.9x-12.8 Underground earthen pipe ventilation system ${\cdots}{\cdots}$y=0.96x-15.11 Vertical side wall ventilation system${\cdots}{\cdots}$ y=0.94x-17.57 5. The experimental results have shown that the relationships existing between the admitted and expelled air and the $Co_2$ concentration can be described with experimental regression lines or an exponent equation as follows: 1) If it is assumed that x is an air speed cm/sec. and y is an expelled air speed in cm/sec. in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below: 2) If it is assumed that x is an admitted volume of air in $m^3/hr$ and y is an expelled volume of air in $m^3/hr$ in a natural ventilation system, since the y is a function of the x, the relationships that exist between x and y can be expressed by the regression lines shown below. 3) If it is assumed that the expelled air speed in cm/sec and replacement air speed in cm/sec. at the bed surface in a natural ventilation system are shown as x and y, respectively, since the y is a function of the x, the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}$ y=0.54X+0.84 4) If it is assumed that the replacement air speed in cm/sec. at the bed surface is shown as x, and $CO_2$ concentration which is expressed by multiplying 1000 times the actual value of $CO_2$ % is shown as y, in a natural ventilation system, since the y is a function of the x the relationships that exist between x and y can be expressed by the following regression line: G.E. (100%)- C.V. (50%) ventilation system${\cdots}{\cdots}$ y=114.53-6.42x 5) If it is assumed that the expelled volume of air is shown as x and the $CO_2$ concentration which is expressed by multiplying 1000 times the actual of $CO_2$ % is shown as y in a natural ventilation system, since the y is a function of of the x, the relationships that exist between x and y can be expressed by the following exponent equation: G.E. (100%)-C.V. (50%) ventilation system${\cdots}{\cdots}$ $$y=127.18{\times}1.0093^{-X}$$ 6. The experimental results have shown that the ratios of the crass sectional area of the G.E. and C.V. vent to the total cubic capacity of the house, required for providing an adequate amount of air in a natural ventilation system, can be estimated as follows: G.E. (admitting vent of the underground ventilation)${\cdots}{\cdots}$ 0.30-0.5% (controllable) C.V. (expelling vent of the ceiling ventilation)${\cdots}{\cdots}$ 0.8-1.0% (controllable) 7. Among several heating devices which were studied in the experiments, the hot-water boilor which was modified to be fitted both as hot-water toiler and as a pressureless steam-water was found most suitable for farm mushroom growing.

  • PDF