• Title/Summary/Keyword: Operation Condition

Search Result 4,090, Processing Time 0.03 seconds

Investigation on Severe Aerodynamic Load Condition about Pantograph (판토그래프 가혹공력하중에 대한 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho;Chung, Kyung-Ryul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.361-366
    • /
    • 2001
  • The present study describes a practical estimation procedure about the pantograph under several severe aerodynamic load conditions. As the operating speed of the Korean Train Express(KTX) reaches 350km/h, structural safety at various conditions should be examined at the design stage. In the present study, a compact and reliable procedure is developed to get aerodynamic loads on each part of the pantograph regarding the typhoon condition, the train/tunnel interaction, the train/train interaction and the side wind condition. In the estimation procedure, 3-dimensional steady and unsteady CFD simulation around the high speed train facilitates assigning the external local flow condition around the pantograph. The procedure is verified using the results of the low speed wind tunnel test at JARI and applied to 7 flow conditions and 4 operation configurations.

  • PDF

The effect of the injection condition on liquid segregation in semi-solid die casting process (반응고 다이캐스팅공정에서 사출조건이 액상편석에 미치는 영향)

  • 신현기;서판기;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.70-73
    • /
    • 2003
  • Semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Many advantages are associated with this forming process at the condition that the forming operation is performed under appropriate conditions in terms of alloy microstructure, injection velocity and pressure. In this study, to look into the relation along them, the experiment of semi-solid die casting has been peformed with various condition of injection, and investigated their microstrucure and solid fraction

  • PDF

A study of Optimal Reconfiguration in Distribution Power System using Initial Operating Point (초기 운전점 선정을 통한 배전계통 최적 재구성에 관한 연구)

  • Seo, Gyu-Seok;Kim, Jung-Nyun;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents a problem that reconfigure distribution power system using branch exchange method. Optimal reconfiguration problem calculates line loss, voltage condition about system states of all situations that become different according to line On/off status, and search for optimum composition of these. However, result is difficult to be calculated fast. Because radiated operation condition of system is satisfied using many connection and sectionalize switches in the distribution power system. Therefore, in this paper, optimization method for reducing system total loss and satisfying operating condition of radial and constraints condition of voltage is proposed using the fastest branch exchange. And optimal solution at branch exchange algorithm can be wrong estimated to local optimal solution according to initial operating state. Considering this particular, an initial operating point algorithm is added and this paper showed that optimal solution arrives at global optimal solution.

Analysis of the Rankine Cycle Including Heat Exchange Processes (熱交換 過程을 考慮한 랜킨 사이클의 性能解析)

  • 정평석;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.150-156
    • /
    • 1986
  • A Rankine cycle including heat exchange processes in the steam generator has been analyzed by the concept of available energy. The operation condition of the cycle can be expressed with the evaporation temperature, and there exists an optimum power condition at which the thermal efficiency of the cycle is almost the same as that of the Carnot cycle at the maximum power condition. The mass flow rate of the working fluid increases sharply as the evaporation temperature approaches to the critical point, and the regenerative system is needed to operate the cycle at the maximum power condition.

Selection and Analysis of Operating Parameters for Condition Monitoring of Emergency Diesel Generator at Nuclear Power Plant (원자력발전소 비상디젤발전기 상태감시를 위한 운전인자 선정에 관한 연구)

  • Park, J.H.;Choi, K.H.;Lee, S.G.;Park, J.E.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.3-8
    • /
    • 2007
  • The emergency AC power supply system of the nuclear power plant is designed to supply the power to the nuclear reactor at the emergency operating condition. The safety function of the diesel generator at the nuclear power plant is to supply AC electric power to the plant safety system whenever the preferred AC power supply is unavailable. The reliable operation of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to maintain and monitor and forecast the reliability level of diesel generator. To do this kind of diesel generator condition monitoring we reviewed several operating factors and history of the wolsong unit 3 diesel generator and selected the proper conditioning monitoring operating factors.

  • PDF

Condition Monitoring of Tool wear using Sound Pressure and Fuzzy Pattern Recognition in Turning Processes (선삭공정에서 음압과 퍼지 패턴 인식을 이용한 공구 마멸 감시)

  • 김지훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.164-169
    • /
    • 1998
  • This paper deals with condition monitoring for tool wear during tuning operation. To develop economic sensing and identification methods for turning processes, sound pressure measurement and digital signal processing technique are proposed. To identify noise sources of tool wear and reject background noise, noise rejection methodology is proposed. features to represent condition of tool wear are obtained through analysis using adaptive filter and FFT in time and frequency domain. By using fuzzy pattern recognition, we extract features, which are sensitive to condition of tool wear, from several features and make a decision on tool wear. The validity of the proposed system is condirmed through the large number of cutting tests in two cutting conditions.

  • PDF

A Study on Development of Pavement Management System for Cement Concrete Pavement (시멘트콘크리트포장의 유지관리체계(PMS)에 관한 연구)

  • 엄주용;김남호;임승욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.363-369
    • /
    • 1996
  • PMS(Pavement Management System) is the effective and efficient decision making system to provide pavements in an acceptable condition at the lowest life-cycle cost. As the highway system become larger, the necessity of the PMS in increasing. As of December 1995, the 3rd stage of PMS project was completed. The accomplishment of the research work can be itemized to the followings : $\bullet$ Calibration of PMS submodules (1) Pavement Condition Evaluation Model (2) Pavement Distress Prediction Model (3) Pavement Performance Prediction Mode (4) Selection of Pavement Rehabilitation Criteria (5) Optimization Technique for PMS Economic Analysis $\bullet$ Development of Computer Program to Implement PMS Logic $\bullet$ A Study to Implement the Automized Pavement Condition Survey Equipment to PMS $\bullet$ PMS Test Run $\bullet$ Development of PMS Operation Guideline $\bullet$ The 2nd Pavement Condition Survey for Long-Term Pavement Performance Monitoring.

  • PDF

Blast Furnace Modeling for Predicting Cohesive Zone Shape (융착대 예측을 위한 고로공정 모델링)

  • Yang, Kwang-Heok;Choi, Sang-Min;Jung, Jin-Kyung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.39-45
    • /
    • 2006
  • Analysis of the internal state of the blast furnace is needed to predict and control the operating condition. Especially, it is important to develop modeling of blast furnace for predicting cohesive zone because shape of cohesive zone influences overall operating condition of blast furnace such as gas flow, chemical reactions and temperature. because many previous blast furnace models assumed cohesive zone to be fixed, they can't evaluate change of cohesive zone shape by operation condition such as PCR, blast condition, and production rate. In this study, an axi-symmetric 2-dimensional steady state model is proposed to simulate blast furnace process. In this model, cohesive zone is changed by solid temperature range, FVM is used for numerical simulation. To find location of cohesive zone whole calculation procedure is iterated Until cohesive zone is converged. Through this approach, shape of cohesive zone, velocity, composition and temperature within the furnace are predicted by model.

  • PDF

Development of Condition Monitoring and Diagnosis System for Rotating Machinery (회전기계의 상태감시 및 진단 시스템 개발)

  • 함종석;이종원;박성호;양보석;황원우;최연선;전오성
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.950-955
    • /
    • 2003
  • This paper introduces an enhanced condition monitoring and diagnosis system recently developed for rotating machinery. In the system, the data aquisition/monitoring signal processing, machine condition classifier, case-based reasoning and demonstration modules are effectively integrated with user-friendliness so that machine operators can easily monitor and diagnose the status of rotating machinery in operation. Some of the new features include the directional spectrum, case-based reasoning and neural network techniques. And the demonstrator modules for fault diagnosis of a Bear driving system and for basic understanding of the rotor dynamics are provided to help the potential users better understand the system.

  • PDF

Method to Estimate Expected Sag Frequency Considering the Operating Condition of Power System (전력계통 운전조건을 고려한 순간전압강하 추계 방법)

  • Son, Jeongdae;Lee, Kyebyung;Park, Chang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.382-387
    • /
    • 2016
  • This paper deals with the assessment of voltage sags regarding the variation of system operating conditions. In general, voltage sag assessment is performed by assuming the constant operating condition throughout the year. However, the assumption can lead to assessment errors in case of considerable changes of system operation condition. This paper presents a method to estimate ESF(expected sag frequency) considering the operating conditions according to the changes of power demand throughout the year.