• Title/Summary/Keyword: Operation Algorithm

Search Result 4,087, Processing Time 0.175 seconds

Intelligent and Responsive Window Opening-Closing Operation Process for Carbon Dioxide(CO2) Management of Secondary School Classroom (중등학교 교실의 이산화탄소(CO2) 관리를 위한 지능형 창호개폐 작동 프로세스)

  • Choi, Yoon-Young;Lee, Hyun-Soo
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.19-30
    • /
    • 2018
  • The school classroom is a common living place where students spend 7 to 14 hours a day to prepare for their careers. Therefore, if the ventilation of the classroom is not properly performed, it may lead to the deterioration of learning ability due to the unclear air. The concentration of carbon dioxide in the classroom is reported to be high, and the increase in carbon dioxide concentration has a negative effect on the learner's academic performance. In this context, the purpose of this study is to propose a methodology for intelligent and responsive window opening-closing operation process that can reduce the concentration of $CO_2$ in the classroom in order to build a support space that can create an effective teaching-learning environment for adolescents. The specific objectives are as follows. First of all, we define the concept of window opening-closing operation. Secondly, twe develop the operation process of window opening-closing. Thirdly, we develop an algorithm for real-time window opening and closing (process) (Window Opening-Closing Operation Process). Finally, we verify the intelligent responsive window opening-closing operation process through developing examples of window opening-closing operation process using the parametric design program. This study is a preliminary study to develop algorithms necessary for window opening-closing operation. Based on the first-order algorithm, We simulated window opening-closing operations according to a hypothetical scenario. As a result, This study can show that the window is open and close depending on the $CO_2$ concentration, but the $CO_2$ concentration in the room is higher than outdoors. Consequentially, we suggest that it is necessary to develop an algorithm to supplement these results because window is often not working when the temperature difference between indoor and outdoor in winter is large.

Automated algorithm on the operation of the power distribution system (배전계통 운영에 대한 자동화 알고리즘)

  • Hyun, Duck-Hwa;Kang, Young-Seok;Moon, Hong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.258-261
    • /
    • 1989
  • This paper presents a new algorithm of the operation on power distribution system by automated distribution system (ADS). A performance of this automated algorithm is established to operate the distribution system faster than earlier. We reduced the time and area of power failure by using automation algorithm on ADS.

  • PDF

A Protection Algorithm of Grid-Interactive Photovoltaic System Considering Operation Characteristics of Recloser (리클로져의 동작특성을 고려한 계통연계형 태양광발전시스템의 보호 알고리즘)

  • Kim, Seul-Ki;Kim, Eung-Sang
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.280-286
    • /
    • 2006
  • The paper proposes a new protection algorithm for reliable operation of grid-interfaced PV system, which can flexibly interact with conventional protective schemes of power utility grid not only to prevent damages to utility or public persons and utility apparatus caused by malfunction or failure in distribution network protection system, but also to protect a PV system itself from faults or abnormal conditions of the network. The proposed algorithm is based on reclosing characteristics of the distribution system. As a network fault occurs, the new scheme determines whether it is momentary or permanent and responds in a pre-programmed way to the fault. For permanent outage, the proposed algorithm shuts down inverter's operations but monitoring system voltage and frequency at the point of common coupling with grid. When it comes to the momentary outage, Inverter starts stand-by operation mode so that it can be automatically connected to the grid without start-up procedures as soon as the system voltage and frequency returns into the normal operation range. In order to investigate' and evaluate the PV system operation, simulation study based on PSCAD/EMTDC has been carried out to verify the performance of the proposed protection scheme.

A Dynamic Dispatching Algorithm for Operation of Automated Guided Vehicles and Machines in CIM Systems (CIM 시스템에서 기계가공과 AGV 의 운영을 위한 동적 작업배정 알고리듬)

  • Kim, Jung-Wook;Rhee, Jong-Tae
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.1
    • /
    • pp.85-101
    • /
    • 1995
  • Automated Guided Vehicles(AGVs) are widely used in computer integrated manufacturing(CIM) systems for material handling purposes. Although automated guided vehicles provide higher levels of flexibility and computer integrability, the installations are limited in number and one of the critical reasons lies in the complexity involved in the operation. The main objective of this research is to alleviate this problem by proposing efficient integrated operational control methods for AGV-based CIM systems. Particularly, this research is concerned with the mixed problem of dispatching automated guided vehicles and scheduling machines operation. The proposed dynamic heuristic algorithm uses various priority schemes and relevant information concerning the load of the system, the status of queues, and the position of AGVs in the scheduling process. The scheduling decision process is hierarchical in the sense that different decision criteria are applied sequentially to identify the most appropriate part to be served. This algorithm consists of two sections, the section of part selection by AGVs for the next service whenever an AGV completes the current assignment, and the section of part selection by machines for next service whenever a machine completes the current operation. The proposed algorithm has been compared with other scheduling schemes using the performance measure of mean flow-time and mean tardiness. Simulation results indicate that the proposed algorithm can reduce the mean flow-time and mean tardiness significantly.

  • PDF

Outage restoration in electric distribution system using Dijkstra algorithm (Dijkstra 알고리즘을 이용한 배전계통에서의 사고복구)

  • Kim, Hoon;Jeon, Young-Jae;Lee, Seung-Yun;Kim, Jae-Sung;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1416-1418
    • /
    • 1999
  • This paper presents a restoration method by using Dijkstra algorithm for outage restoration problems in distribution system that considering load capacity constraints and operation constraints. Restoration problem in distribution system is difficult to solve problem in a short times, because of a distribution system that supplies power for customers combined with many tie-line switches and sectionalizing switches and have to satisfy plenty of operation conditions. Therefore, this paper applied Dijkstra algorithm which is satisfy radial operation conditions in distribution system. This proposed method used Kruskal algorithm include to Dijkstra algorithm Therefore, proposed method is restored to a outage sections in a short times and just then to satisfied with a operation conditions in distribution system. A 26-bus, 31-branch model system is used to demonstrate the effectiveness of the proposed method.

  • PDF

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

What are the benefits and challenges of multi-purpose dam operation modeling via deep learning : A case study of Seomjin River

  • Eun Mi Lee;Jong Hun Kam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.246-246
    • /
    • 2023
  • Multi-purpose dams are operated accounting for both physical and socioeconomic factors. This study aims to evaluate the utility of a deep learning algorithm-based model for three multi-purpose dam operation (Seomjin River dam, Juam dam, and Juam Control dam) in Seomjin River. In this study, the Gated Recurrent Unit (GRU) algorithm is applied to predict hourly water level of the dam reservoirs over 2002-2021. The hyper-parameters are optimized by the Bayesian optimization algorithm to enhance the prediction skill of the GRU model. The GRU models are set by the following cases: single dam input - single dam output (S-S), multi-dam input - single dam output (M-S), and multi-dam input - multi-dam output (M-M). Results show that the S-S cases with the local dam information have the highest accuracy above 0.8 of NSE. Results from the M-S and M-M model cases confirm that upstream dam information can bring important information for downstream dam operation prediction. The S-S models are simulated with altered outflows (-40% to +40%) to generate the simulated water level of the dam reservoir as alternative dam operational scenarios. The alternative S-S model simulations show physically inconsistent results, indicating that our deep learning algorithm-based model is not explainable for multi-purpose dam operation patterns. To better understand this limitation, we further analyze the relationship between observed water level and outflow of each dam. Results show that complexity in outflow-water level relationship causes the limited predictability of the GRU algorithm-based model. This study highlights the importance of socioeconomic factors from hidden multi-purpose dam operation processes on not only physical processes-based modeling but also aritificial intelligence modeling.

  • PDF

Distributed Bit Loading and Power Control Algorithm to Increase System Throughput of Ad-hoc Network (Ad-hoc 네트워크의 Throughput 향상을 위한 적응적 MCS 레벨 기반의 분산형 전력 제어 알고리즘)

  • Kim, Young-Bum;Wang, Yu-Peng;Chang, Kyung-Hi;Yun, Chang-Ho;Park, Jong-Won;Lim, Yong-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4A
    • /
    • pp.315-321
    • /
    • 2010
  • In Ad-hoc networks, centralized power control is not suitable due to the absence of base stations, which perform the power control operation in the network to optimize the system performance. Therefore, each node should perform power control algorithm distributedly instead of the centralized one. The conventional distributed power control algorithm does not consider the adaptive bit loading operation to change the MCS (modulation and coding scheme) according to the received SINR (signal to interference and noise ratio), which limits the system throughput. In this paper, we propose a novel distributed bit loading and power control algorithm, which considers the adaptive bit loading operation to increase total system throughput and decrease outage probability. Simulation results show that the proposed algorithm performs much better than the conventional algorithm.

A New Algorithm to Reduce the Mal-Operation of DOCR in Bi-directional Power Distribution Systems

  • Jang, Su-Hyeong;Oh, Joon-Seok;Jeong, Ui-Yong;Kim, Jae-Eon
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.585-591
    • /
    • 2016
  • DOCR can be used to efficiently increase the reliability and to protect the bi-directional D/L(Distribution Lines). As more DG(Distributed Generation)s attempt to connect the bi-directional D/L, there is an increasing need for studies of how to use DOCR installed in the D/L. This paper investigates the operating principles of DOCR and presents the results an effect of sequence and fault impedance in L-L(Line to Line) fault. An advanced DOCR operating algorithm is proposed to reduce the mal-operation of conventional DOCR. The proposed algorithm is applied to the bi-directional power flow system and shows that it decreases the mal-operation of DOCR through the computer simulation.