• Title/Summary/Keyword: Operating optimization

Search Result 972, Processing Time 0.03 seconds

Novel System Modeling and Design by using Eclectic Vehicle Charging Infrastructure based on Data-centric Analysis (전기차 충전인프라 및 데이터 연계 분석에 의한 시스템 모델링 및 실증 설계)

  • Kim, Hangsub;Park, Homin;Jeong, Taikyeong;Lee, Woongjae
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • In this paper, we analyzed the relationship between charging operation system and electricity charges connected with charging infrastructure among data of many demonstration projects focused on electric vehicles recently. At this point in time, due to the rapid increase in demand for the electric charging infrastructure that will take place in the future, we can prepare for an upcoming era in the sense of forecasting the demand value. At the same time, demonstrating and modeling optimized system modeling centering on sites is a prerequisite. The modeling based on the existing small - scale simulation and the design of the operating system are based on the data linkage analysis. In this paper, we implemented a new optimized system modeling and introduced it as a standard format to analyze time - dependent time - divisional data for each vehicle and user in each point and node. In order to verify the efficiency of the optimization based on the data linkage analysis for the actual implemented electric car charging infrastructure and operation system.

The Cost Optimization Solution for Developing the Image Infra-Red (IIR) Missile Seeker Operated Under Various Environments (정밀 유도무기용 적외선 영상탐색기의 운용환경에 따른 성능대비 개발비용 최적화 연구)

  • Kim, Ho-Yong;Kang, Seok-Joong;Jhee, Ho-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-373
    • /
    • 2019
  • An Image Infra-Red(IIR) seeker is widely used for precision guided munitions to provide intelligent and precise target detection in terms of high kill probability. However, there have been issues in determining the performance versus cost trade-offs due to high cost of seeker comparing to other units of the munitions. In this paper, performance/cost evaluations have been carried out to find the most cost-effective solution for developing the IIR seekers. The relationships between the critical parameters and cost are investigated to determine the optimal point which represents the low cost with high performance. It is expected that the presented approach will be able to be used for guidelines to select the appropriate IIR seeker for the given operating conditions and can be useful to estimate the cost effectiveness of the precision guided munitions at early design stage.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.

Optimization of Biodiesel Synthesis Process Using Spent Coffee Grounds (커피가루를 이용한 바이오디젤의 제조공정 최적화)

  • La, Joo-Hee;Lee, Seung-Bum;Lee, Jae-Dong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.72-76
    • /
    • 2011
  • In this study, we investigated the characteristics of biodiesel using the waste coffee oil which was extracted by waste coffee grounds. We tried to deduce the optimum conditions by defining the operating variables, such as mole ratio between methanol and coffee oil (6~18) and the reaction temperature ($45{\sim}60^{\circ}C$) in the biodiesel production processes. The performance was evaluated in terms of yields, contents of fatty acid methyl ester (FAME), viscosities, and heating values. The optimum reaction temperature was $55^{\circ}C$. Also, the best biodiesel was produced at the mole ratio between methanol and coffee oil of 12. The highest heating value of the produced biodiesel made from coffee oil was 39.0~39.4 MJ/kg, which satisfies the general standard for the biodiesel energy density, 39.3~39.8 MJ/kg.

A Study on a Mask R-CNN-Based Diagnostic System Measuring DDH Angles on Ultrasound Scans (다중 트레이닝 기법을 이용한 MASK R-CNN의 초음파 DDH 각도 측정 진단 시스템 연구)

  • Hwang, Seok-Min;Lee, Si-Wook;Lee, Jong-Ha
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.183-194
    • /
    • 2020
  • Recently, the number of hip dysplasia (DDH) that occurs during infant and child growth has been increasing. DDH should be detected and treated as early as possible because it hinders infant growth and causes many other side effects In this study, two modelling techniques were used for multiple training techniques. Based on the results after the first transformation, the training was designed to be possible even with a small amount of data. The vertical flip, rotation, width and height shift functions were used to improve the efficiency of the model. Adam optimization was applied for parameter learning with the learning parameter initially set at 2.0 x 10e-4. Training was stopped when the validation loss was at the minimum. respectively A novel image overlay system using 3D laser scanner and a non-rigid registration method is implemented and its accuracy is evaluated. By using the proposed system, we successfully related the preoperative images with an open organ in the operating room

OHDSI OMOP-CDM Database Security Weakness and Countermeasures (OHDSI OMOP-CDM 데이터베이스 보안 취약점 및 대응방안)

  • Lee, Kyung-Hwan;Jang, Seong-Yong
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.63-74
    • /
    • 2022
  • Globally researchers at medical institutions are actively sharing COHORT data of patients to develop vaccines and treatments to overcome the COVID-19 crisis. OMOP-CDM, a common data model that efficiently shares medical data research independently operated by individual medical institutions has patient personal information (e.g. PII, PHI). Although PII and PHI are managed and shared indistinguishably through de-identification or anonymization in medical institutions they could not be guaranteed at 100% by complete de-identification and anonymization. For this reason the security of the OMOP-CDM database is important but there is no detailed and specific OMOP-CDM security inspection tool so risk mitigation measures are being taken with a general security inspection tool. This study intends to study and present a model for implementing a tool to check the security vulnerability of OMOP-CDM by analyzing the security guidelines for the US database and security controls of the personal information protection of the NIST. Additionally it intends to verify the implementation feasibility by real field demonstration in an actual 3 hospitals environment. As a result of checking the security status of the test server and the CDM database of the three hospitals in operation, most of the database audit and encryption functions were found to be insufficient. Based on these inspection results it was applied to the optimization study of the complex and time-consuming CDM CSF developed in the "Development of Security Framework Required for CDM-based Distributed Research" task of the Korea Health Industry Promotion Agency. According to several recent newspaper articles, Ramsomware attacks on financially large hospitals are intensifying. Organizations that are currently operating or will operate CDM databases need to install database audits(proofing) and encryption (data protection) that are not provided by the OMOP-CDM database template to prevent attackers from compromising.

Preminary analysis of performance of avionics equipment using worst case analysis (Worst Case 분석을 이용한 항공 전자장비 성능 사전분석)

  • Cheon, Young-ho;Woo, Hui-Seung;Seo, Inn-beom;Ahn, Tae-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.185-194
    • /
    • 2022
  • Avionics equipment requires various environmental conditions and performance during development, and as a countermeasure against such development risk, the worst-case circuit analysis(WCCA) is applied to predict perform preliminary performance analysis. WCCA calculates the maximum and minimum values by combining the parameter values of the relevant circuit after deriving the parameter values in consideration of the aging of the temperature and operating period at the component level. In this paper, the necessary matters for WCCA application are described. Chapter 2 describes the differences and characteristics of the WCCA techniques EVA, RSS, and Monte Carlo.Chapter 3 introduces the analysis process through the example circuit to introduce the actual analysis procedure. Chapter 4 describes the method of selecting an analysis technique for each condition of the analysis target. As a result of applying the procedures and analysis methods introduced in this paper when open, it was confirmed that preliminary performance analysis and part optimization design verification are possible.

A Study on the Optimization of a Contracted Power Prediction Model for Convenience Store using XGBoost Regression (XGBoost 회귀를 활용한 편의점 계약전력 예측 모델의 최적화에 대한 연구)

  • Kim, Sang Min;Park, Chankwon;Lee, Ji-Eun
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.91-103
    • /
    • 2022
  • This study proposes a model for predicting contracted power using electric power data collected in real time from convenience stores nationwide. By optimizing the prediction model using machine learning, it will be possible to predict the contracted power required to renew the contract of the existing convenience store. Contracted power is predicted through the XGBoost regression model. For the learning of XGBoost model, the electric power data collected for 16 months through a real-time monitoring system for convenience stores nationwide were used. The hyperparameters of the XGBoost model were tuned using the GridesearchCV, and the main features of the prediction model were identified using the xgb.importance function. In addition, it was also confirmed whether the preprocessing method of missing values and outliers affects the prediction of reduced power. As a result of hyperparameter tuning, an optimal model with improved predictive performance was obtained. It was found that the features of power.2020.09, power.2021.02, area, and operating time had an effect on the prediction of contracted power. As a result of the analysis, it was found that the preprocessing policy of missing values and outliers did not affect the prediction result. The proposed XGBoost regression model showed high predictive performance for contract power. Even if the preprocessing method for missing values and outliers was changed, there was no significant difference in the prediction results through hyperparameters tuning.

An Optimal Design of a Driving Mechanism for Air Circuit Breaker using Taguchi Design of Experiments (다구찌실험계획법을 활용한 기중차단기의 메커니즘 최적화)

  • Park, Woo-Jin;Park, Yong-ik;Ahn, Kil-Young;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.78-84
    • /
    • 2022
  • An air circuit breaker (ACB) is an electrical protection device that interrupts abnormal fault currents that result from overloads or short circuits in a low-voltage power distribution line. The ACB consists of a main circuit part for current flow, mechanism part for the opening and closing operation of movable conductors, and arc-extinguishing part for arc extinction during the breaking operation. The driving mechanism of the ACB is a spring energy charging type. The faster the contact opening speed of the movable conductors during the opening process, the better the breaking performance. However, there is a disadvantage that the durability of mechanism decreases in inverse proportion to the use of a spring capable of accumulating high energy to configure the breaking speed faster. Therefore, to simultaneously satisfy the breaking performance and mechanical endurance of the ACB, its driving mechanism must be optimized. In this study, a dynamic model of the ACB was developed using the MDO(Mechanism Dynamics Option) module of CREO, which is widely used in multibody dynamics analysis. To improve the opening velocity, the Taguchi design method was applied to optimize the design parameters of an ACB with many linkages. In addition, to evaluate the improvement in the operating characteristics, the simulation and experimental results were compared with the MDO model and improved prototype sample, respectively.

Design and heat transfer optimization of a 1 kW free-piston stirling engine for space reactor power system

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2184-2194
    • /
    • 2021
  • The Free-Piston Stirling engine (FPSE) is of interest for many research in aerospace due to its advantages of long operating life, higher efficiency, and zero maintenance. In this study, a 1-kW FPSE was proposed by analyzing the requirements of Space Reactor Power Systems (SRPS), of which performance was evaluated by developing a code through the Simple Analysis Method. The results of SAM showed that the critical parameters of FPSE could satisfy the designed requirements. The heater of the FPSE was designed with the copper rectangular fins to enhance heat transfer, and the parametric study of the heater was performed with Computational Fluid Dynamics (CFD) software STAR-CCM+. The Performance Evaluation Criteria (PEC) was used to evaluate the heat transfer enhancement of the fins in the heater. The numerical results of the CFD program showed that pressure drop and Nusselt number ratio had a linear growth with the height of fins, and PEC number decreased as the height of fins increased, and the optimum height of the fin was set as 4 mm according to the minimum heat exchange surface area. This paper can provide theoretical supports for the design and numerical analysis of an FPSE for SRPSs.