• 제목/요약/키워드: Operating Fluid

검색결과 1,003건 처리시간 0.024초

유체와 구조물의 연성을 고려한 rack 구조물의 내진해석 (Seismic Analysis of Rack Structure with Fluid-Structure Interaction)

  • 김성종;이영신;류충현;양계형;정성환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.465-470
    • /
    • 2001
  • In this study, the seismic analysis of rack structure with fluid-structure interaction is performed through use of the Finite Element Method(FEM) code ANSYS. Fluid-structure interaction can specify in terms of an hydrodynamic effect which is defined as the added mass per unit length divided by the area of the cross section. Using the Floor Response Spectrum(FRS) obtained through the time-history analysis, modal analysis and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) condition is carried out. The fluid-structure interaction effects on the rack structure are investigated.

  • PDF

유압 밸브-모터 시스템의 불확실성에 대한 $H_{\infty}$ 제어 (The $H_{\infty}$ control of the uncertainty for the hydraulic fluid valve-motor system)

  • 김도석;이준환;유삼현;이종원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.676-681
    • /
    • 2000
  • This study describes a hydraulic fluid property compensator under the various operating conditions. Because hydraulic fluid systems have much more excellent features than other control systems, they are used in many fields. However, the characteristics of hydraulic fluid are changed due to various operating conditions. This phenomenon is called uncertainty. Especially, bulk modulus is considered as the most dominant parameter in this study. Under the wide range of temperature and pressure, bulk modulus is changed. In order to overcome the uncertainty, $H_{\infty}$ technique will be used for this study. Spectral factorization, model-matching problem and controller parametrization are also applied to achieve the desired robust control action. Designed controller using the $H_{\infty}$ technique, is adopted for the hydraulic fluid valve-motor system.

  • PDF

동작 전류에 의한 Magnetic fluid Linear Pump의 동특성 해석 (Analysis of the Driving Characteristics in the Magnetic Fluid Linear Pump by Operating Current)

  • 서강;박관수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.237-246
    • /
    • 2004
  • The advantages of the Magnetic Fluid Linear Pump(MFLP) is that this device could Pump the non-conductive. non-magnetic liquid such as Insulin or blood because of the segregation structure of the magnetic fluid and pumping liquid. In this device. the sequential currents are needed to Produce pumping forces so that Pumping Forces and Pumping speed mainly depend on the current Patterns. The excessive forces at Pumping moment could cause the medical shock, and weak forces at intermediate moment could cause the back flow or the pumping liquid. So the ripples of the pumping forces need to be reduced for the medical application. In this research, the driving characteristics in the MFLP by operating current is analysed. The change of magnetic fluid surface according to the driving currents could be obtained be magneto-hydrodynamic analysis so that Pumping fortes could be computed by integration of the surface moving to the pumping direction at each moment. The actual MFLP with 13mm diameter was made and tested for experiments. The effects of driving current and frequency on the pumping forces and pumping speed were analyzed and compared with experimental measurements.

정유공정 압축기의 10,500 rpm 운전속도 밸런싱을 통한 MCS의 확장 (Expanding the MCS of Refinery Process Compressor through Operating-Speed Balancing at 10,500 rpm)

  • 이안성;김병옥
    • 한국유체기계학회 논문집
    • /
    • 제12권6호
    • /
    • pp.41-46
    • /
    • 2009
  • This paper deals with the operating-speed (high-speed) balancing of a refinery gasoline HDS (hydrodesulfurization) process recycle-gas 8-stages compressor rotor. A low-speed balancing condition of the rotor was measured as maintaining the G2.5 level. But an inspection run of operating-speed balancing condition, using tilting-pad journal bearings of actual use, showed that while it could be continuously-operated safely at a rated speed of 10,500 rpm, the rotor would not be able to run over 11,000 rpm as the vibration increased very sharply, approaching 11,000 rpm. In order to cure that a series of operating-speed balancing, which first calculated balance correction-weights by applying the influence coefficient measured and calculated at 10,500 rpm and then implemented correction works, was carried-out. The final operating-speed balancing results showed that the vibrations at the bearing pedestals represented very good levels of 0.2 mm/s by decreasing to as much as the 1/10 of the original vibrations and particularly, even at a targeted maximum continuous operating speed, MCS, of 11,500 rpm the vibrations represented about 1 mm/s, which is the operating-speed balancing vibration specification of API. Therefore, the expansion of MCS was successfully accomplished through the operating-speed balancing.

An experimental study on the cooling performance and the phase shift between piston and displacer in the Stirling cryocooler

  • Park, S. J.;Y. J. Hong;Kim, H. B.;D. Y. Koh;B. K. Yu;Lee, K. B.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권1호
    • /
    • pp.111-117
    • /
    • 2003
  • In the design of the split type free displacer Stilting cryocooler the motion of the displacer is very important to decide the cooling capacity, which depends upon the working gas pressure, the swept volume in the compression space and the expansion space, operating frequency, the phase shift between piston and displacer, etc. In this study, Stirling cryocooler actuated by the electric farce of the dual linear motor is designed and manufactured. Cool down characteristics of the cold end with laser displacement sensor in the expander of the Stilting cryocooler is evaluated. The charging pressure was 15kg$_{f}$/$\textrm{cm}^2$ and operating frequency was 50Hz. Input power and the lowest temperature were about 32W and 67K, respectively. And, displacement of the piston is measured by LVDTs (Linear Variable Differential Transformers), displacement of thedisplacer is measured by laser optic method, and phase shift between piston and displacer is discussed. As the peak-to-peak pressure of the compressor was increased, peak-to-peak displacement of the displacer was increased. The peak-to-peak displacement of the displacer increases in the range of 0 - 64.5Hz(resonant frequency of the displacer), but decreases steeply when the operating frequency is bigger than the resonant frequency. Finally when the phase shift between displacements of the Piston and displacer is 45。, operating frequency is optimum and is decided by resonant frequency of the expander, mass and cross section area of the displacer and constant by friction and flow resistance.e.

가변 열원에서 작동하기 위한 유기랭킨 사이클에 관한 연구 (A Study on the Organic Rankine Cycle for the Fluctuating Heat Source)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제17권1호
    • /
    • pp.12-21
    • /
    • 2014
  • An organic Rankine cycle was analyzed to work at the optimal operating point when the heat source is fluctuated. R245fa was adopted as a working fluid, and an axial-type turbine as expander on the cycle was designed to convert the heat energy to the electricity since the turbo-type expander works at off-design points better than the positive displacement-type expander. A supersonic nozzle was designed to increase the spouting velocity because a higher spouting velocity can produce more output power. They were designed by the method of characteristics for the operating fluid of R245fa. Three different cases, such as various spouting velocities, various inlet total temperatures, and various nozzle numbers, were studied. From these results, an optimal operating cycle can be designed with the organic Rankine cycle when the available heat source as renewable energy is low-grade temperature and fluctuated.

Effects of Geometry and Operating Fluid on the Expansion Behavior of Liquid-Solid Fluidized Beds

  • Mohsen Mozafari-Shamsi;Alireza Malooze;Mohammad Sefid;Mostafa Soroor;Ehsan Mehrabi Gohari
    • Korean Chemical Engineering Research
    • /
    • 제61권2호
    • /
    • pp.312-321
    • /
    • 2023
  • Fluidized beds have been widely used in industrial applications, which in most of them, the operating fluid is non-Newtonian. In this study, the combination of the lattice Boltzmann method (LBM) and the smoothed profile method has been developed for non-Newtonian power-law fluids. The validation of the obtained model were investigated by experimental correlations. This model has been used for numerical studying of changing the operating fluid and geometrical parameters on the expansion behavior in liquid-solid beds with both Newtonian and non-Newtonian fluids. Investigations were performed for seven different geometries, one Newtonian, and two non-Newtonian fluids. The power-law index was in the range of 0.8 to 1, and the results for the Newtonian fluidized beds show more porosity than the non-Newtonian ones. Furthermore, increasing the power-law index resulted in enhancing the bed porosity. On the other hand, bed porosity was decreased by increasing the initial bed height and the density of the solid particles. Finally, the porosity ratio in the bed was decreased by increasing the solid particle diameter.

이등변삼각형 단면을 갖는 파이프 내의 Pseudo-Plastic 유체유동에 대한 압력강하의 연구 (Investigation of Pressure Drop for a Pseudo-plastic Fluid Flow in Isosceles Triangle Pipes)

  • 이동렬
    • 동력기계공학회지
    • /
    • 제13권2호
    • /
    • pp.30-35
    • /
    • 2009
  • Numerical Calculations for dimensionless pressure drop (friction factor times Reynolds number) have been obtained for fully developed laminar flow of MPL(Modified Power Law) fluid in isosceles triangle pipes. The solutions are valid for Pseudoplastic fluids over a wide range from Newtonian behavior at low shear rates through transition region to power law behavior at higher shear rates. The analysis identified a dimensionless shear rate parameter which for a given set of operating conditions specifies where in the shear rate range a particular system is operating, i.e., Newtonian, transition or power law region. The numerical calculation data of the dimensionless pressure drop for the Newtonian and power law regions are compared with previously published asymptotic results presenting within 0.16 % in Newtonian region and 2.98 % in power law region.

  • PDF

A Study on Selecting Criteria of Working Fluid in Loop Heat Pipes with a Circular Plate Type Evaporator

  • Nguyen, Xuanhung;Sung, Byung-Ho;Choi, Jee-Hoon;Jo, Jung-Rae;Yim, Kwang-Bin;Kim, Chul-Ju
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.309-314
    • /
    • 2008
  • increased heat dissipation and higher heat density of electronic equipment and/or parts released. A loop heat pipe(LHP) has been payed closer attention to the potential candidate of an electronic cooling. As of the LHP with a circular plate type evaporator developed, this study focused on its operating characteristics on the steady state in accordance with charging different working fluid. The relationship between working fluid and operating characteristics is discussed.

  • PDF

바이오가스 연료를 사용하는 소형 가스/증기터빈 복합 발전 시스템의 성능특성 해석 (Operating Characteristics Study of a Small Gas/Steam Turbine Combined System Using Biogas)

  • 강도원;신현동;김동섭;허광범;박정극
    • 한국유체기계학회 논문집
    • /
    • 제15권3호
    • /
    • pp.51-56
    • /
    • 2012
  • This study analyzed the influence of firing biogas on the performance and operation of a gas/steam turbine combined system. A reference gas/steam turbine combined system, designed with biogas fuel(57% volumetric methane) was set up and off-design simulation was made to investigate operating characteristics when a couple of operating schemes to mitigate turbine blade overheating were applied. Performance at base-load operation using each scheme was compared and part load operation using the variable inlet guide vane was analysed. Also, differences in operating characteristics and performance caused by changes in the methane content of biogas and ambient temperature were examined.