• Title/Summary/Keyword: Openings

Search Result 776, Processing Time 0.023 seconds

Detail-design Guidance for the Openings on the Web Structure Supporting the Deck (갑판지지 웨브 구조에서의 개구부 상세설계기준 정립)

  • Kim, Sung-Chan;Lee, Kyung-Seok;Song, Jae-Young;Kim, Kyung-Su
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.612-618
    • /
    • 2007
  • There are a lot of openings, holes and slots in ship structural members. It is not easy to solve the troubles around the openings adequately at the detail design stage, because there are a lot of concerning locations. There are not also clear design rules of classification societies and it is not possible to apply direct calculation for all the concerning members. Therefore, it is necessary to set up simplified approach such as a standard or guidance in order to decide the opening design quickly. For this study, guidance and regulations of each classification and several companies were surveyed. Grillage analysis and the refined mesh method were used to evaluate the strength around hole considering boundary condition and more detailed member arrangement. As a result, the standard for opening design was established and verified.

Experiments on the Influence of Opening of Natural Smoke Ventilators on the Stack Effect in High-rise Mixed-use Residential Buildings (초고층주상복합건물에서 배연창 개방이 연돌효과에 미치는 영향에 대한 실험적 연구)

  • Lim, Chae-Hyun;Kim, Bum-Gyu;Park, Yong-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.89-94
    • /
    • 2009
  • The stack effect in high-rise buildings is expected more significant at nights in winter due to the large temperature difference between the inside and outside of the buildings. However, the existence of large openings such as natural ventilators on the floor may effect the position of neutral plane, smoke spread at fire and thus obstruct the door openings for rescue. In this paper, the vertical and horizontal pressure distribution with different openings of natural smoke ventilators was experimentally analyzed by investigating pressure differentials.

Reconstruction of In-beam PET for Carbon therapy with prior-knowledge of carbon beam-track

  • Kim, Kwangdon;Bae, Seungbin;Lee, Kisung;Chung, Yonghyun;An, Sujung;Joung, Jinhun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.384-390
    • /
    • 2015
  • There are two main artifacts in reconstructed images from in-beam positron emission tomography (PET). Unlike generic PET, in-beam PET uses the annihilation photons that occur during heavy ion therapy. Therefore, the geometry of in-beam PET is not a full ring, but a partial ring that has one or two openings around the rings in order for the hadrons to arrive at the tumor without prevention of detector blocks. This causes truncation in the projection data due to an absence of detector modules in the openings. The other is a ring artifact caused by the gaps between detector modules also found in generic PET. To sum up, in-beam PET has two kinds of gap: openings for hadrons, and gaps between the modules. We acquired three types of simulation results from a PET system: full-ring, C-ring and dual head. In this study, we aim to compensate for the artifacts that come from the two types of gap. In the case of truncation, we propose a method that uses prior knowledge of the location where annihilations occur, and we applied the discrete-cosine transform (DCT) gap-filling method proposed by Tuna et al. for inter-detector gap.

Dynamic Response of Underground Openings Considering the Effect of Water Saturation (지하수의 영향을 고려한 지하공동구조체의 동적응답)

  • 김선훈;김광진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.391-399
    • /
    • 2001
  • Three-dimensional dynamic analysis of underground openings subjected to explosive loadings considering the effects of water saturation is carried out in this study. The surrounding rock mass is assumed to be the limestone with 13.5% of porosity. Two calculations are compared using as identical explosive charge; the first in dry rock of 13.5% porosity, the second in the identical rock, but in a fully saturated condition. It is shown that velocity, displacement, and stress time histories are higher in saturated rock than those in dry rock through numerical studies. It is also shown that underground openings in saturated rock masses could be significantly more vulnerable to the potential damages associated with shear failure than those in dry medium.

  • PDF

Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings (폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석)

  • 김선훈;김진웅;김광진
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Three-dimensional dynamic analyses of underground openings subjected to explosive loadings are carried out. Dynamic analyses consist of two steps; one-dimensional source calculation and three-dimensional tunnel analysis. One-dimensional source calculation includes explosive charge and the free field surrounding rock. The input pressure time history for three-dimensional tunnel analysis is obtained from the companion one-dimensional source calculation. The computer program MPDAP-3D incorporated this analysis capability. It is shown that the computer program is a useful tool for the analysis of the structural safety evaluation of underground openings during construction by drill and blasting method.

  • PDF

A Study on the Mechanical Ventilation System of Bathroom in Apartment House (공동주택 화장실의 기계 환기시스템에 관한 연구)

  • 함진식
    • Journal of the Korean housing association
    • /
    • v.12 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • To design mechanical ventilation for bathroom of apartment houses where air supply and exhaust are taken into consideration, mock-ups of ventilation systems, widely used in bathroom of apartment houses with an area of 100$\textrm{m}^2$, were made and installed in a laboratory. These ventilation mock-ups were available for control of air supply and exhaust, and the sizes of supply openings were 40cm${\times}$1cm, 40cm${\times}$3cm, and 40cm${\times}$5cm. They were installed at five positions, spaced 45cm at a height of 5cm from the floor. The exhaust fan was designed for its operating voltage to be set to five steps(100V, 130V, 150V, 180V and 220V) in order to control its air flow rates. When the size and position of each supply opening were changed with the wind velocity of the exhaust fan set to the step 5, the ventilation rates were measured and analyzed by the concentration decay method of tracer gas method, in order to present an efficient mechanical ventilation system. The results of the study revealed that the ventilations rates would increase in the presence of supply openings, compared to the absence of supply openings, and that the larger the size of the supply opening, the more the ventilation rates. Therefore, it was found necessary to take air supply into consideration.

  • PDF

2D evaluation of crack openings using smeared and embedded crack models

  • Gamino, Andre Luis;Manzoli, Osvaldo Luis;de Oliveira e Sousa, Jose Luiz Antunes;Bittencourt, Tulio Nogueira
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.483-496
    • /
    • 2010
  • This work deals with the determination of crack openings in 2D reinforced concrete structures using the Finite Element Method with a smeared rotating crack model or an embedded crack model. In the smeared crack model, the strong discontinuity associated with the crack is spread throughout the finite element. As is well known, the continuity of the displacement field assumed for these models is incompatible with the actual discontinuity. However, this type of model has been used extensively due to the relative computational simplicity it provides by treating cracks in a continuum framework, as well as the reportedly good predictions of reinforced concrete members' structural behavior. On the other hand, by enriching the displacement field within each finite element crossed by the crack path, the embedded crack model is able to describe the effects of actual discontinuities (cracks). This paper presents a comparative study of the abilities of these 2D models in predicting the mechanical behavior of reinforced concrete structures. Structural responses are compared with experimental results from the literature, including crack patterns, crack openings and rebar stresses predicted by both models.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Welding Distortion Characteristics of Door Openings According to Changing Shape of Stiffener (Door Opening부의 보강재 형상변화에 따른 용접 변형 특성)

  • Lee, Dong-Hun;Seo, Jung-Kwan;Yi, Myung-Su;Hyun, Chung-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.153-160
    • /
    • 2019
  • Welding often results in welding distortion during the assembly process. The welding distortion of thin-plate structures such as the living quarters of ships and offshore installations is a more significant problem than in the case of thick-plate structures. Pre-stressing/heating and fairing, which are additional works to mitigate and control welding distortion, are inevitable, and the construction planning is accordingly delayed. In order to prevent welding distortion and minimize the additional work during the assembly process, increasing the plate thickness and/or the number of stiffeners may be a simple solution, but it may give rise to problems related to cost and weight. In this study, the welding distortion control effect of the type of stiffeners on the door openings of various living quarter structures was investigated using an experimental method and a finite element method. The results showed the feasibility of mitigating and controlling the welding distortion, and the optimum selection of the type of stiffeners was confirmed.

An Experimental Study on the Structural Performance of Openings at End Steel Beams (강재 단순보 단부에 근접한 개구부의 구조성능에 관한 실험적 연구)

  • Han, Dong-Ho;Yoon, Sung-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.138-145
    • /
    • 2020
  • This study was conducted to identify the structural performance of the opening in a location close to the support point in the perforated beam system of steel beams. In addition, structural performance was determined through experiments on reinforced openings using vertical and horizontal steel plates. In the steel simple beam, it was found that the opening was in a position closer to the support point, half the height of the steel beam (D/2), which was more appropriate than the height of the steel beam (D). In addition, the reinforcement effect of horizontal steel plate was greater than that of vertical steel plate reinforcement. Structural performance was improved when there was no gap between openings and steel plates.