• Title/Summary/Keyword: Open-Cycle Engine

Search Result 65, Processing Time 0.023 seconds

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

Rotor Leading Edge Thickness Effect on Supersonic Impulse Turbine Performance (초음속 충동형 터빈의 로터 앞전 두께가 성능 변화에 미치는 영향)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • Turbopump, which is a part of 75 ton open cycle liquid rocket engine has a super sonic impulse turbine. This paper investigated the leading edge thickness effect on the turbine performance experimently. Two rotors were tested with the different leading edge thickness. The ratios (rotor thickness to Pitch) are 1.9 and 1.4 times to 30 ton turbine rotor. As a result, a rotor with 1.4 times ratio had a 1.5% higher efficiency gain than a rotor with 1.9 times ratio. The pressure ratio with the maximum efficiency on the same rotational speed was increased to the full expansion ratio of nozzle.

Rotor leading edge thickness effect on supersonic impulse turbine performance (초음속 충동형 터빈의 로터 전익 두께가 성능 변화에 미치는 영향)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.149-152
    • /
    • 2010
  • It was investigated that effect of the supersonic impulse turbine rotor leading edge thickness which was the part of 75 ton open cycle liquid rocket engine turbopump. The test for turbine was performed that the rotor thickness to pitch ratio was 1.9 and 1.4 to 30 ton turbine. As a result of test, the rotor with lower thickness(1.4) had 1.5% efficiency gain to the higher thickness(1.9) and the pressure ratio with maximum efficiency was increased to the nozzle full expansion point.

  • PDF

Process Modeling of IGCC Power Plant using Open-Equation Modeling Framework (개방형 수식모델링 툴을 이용한 IGCC 플랜트 공정모사)

  • Kim, Simoon;Joo, Yongjin;Kim, Miyeong;Lee, Joongwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.113.1-113.1
    • /
    • 2010
  • IGCC(Integrated Coal Gasification and Combined Cycle) plants can be among the most advanced and environmental systems for electric energy generation from various feed stocks and is becoming more and more popular in new power generation fields. In this work, the performance of IGCC plants employing Shell gasification technology and a GE 7FB gas turbine engine was simulated using IPSEpro open-equation modeling environment for different operating conditions. Performance analyses and comparisons of all operating cases were performed based on the design cases. Discussions were focused on gas composition, syngas production rate and overall performance. The validation of key steady-state performance values calculated from the process models were compared with values from the provided heat and material balances for Shell coal gasification technology. The key values included in the validation included the inlet coal flow rate; the mass flow rate, heating value, and composition of major gas species (CO, H2, CH4, H2O, CO2, H2S, N2, Ar) for the syngas exiting the gasifier island; and the HP and MP steam flows exiting the gasifier island.

  • PDF

Optimal Design and Test of Fuel-Rich Gas Generator

  • Lee, Changjin;Kwon, Sun-Tak
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.560-564
    • /
    • 2004
  • The optimal design and combustion analysis of the gas generator for Liquid Rocket Engine (LRE) were performed. A fuel-rich gas generator in open cycle turbopump system was designed for 10ton$_{f}$ in thrust with RP-1/Lox propellant. The optimal design was done for maximizing specific impulse of main combustion chamber with constraints of combustion temperature and power matching required by turbopump system. Design variables were selected as total mass flow rate to gas generator, O/F ratio in gas generator, turbine injection angle, partial admission ratio, and turbine rotational speed. Results of optimal design show the dimension of length, diameter, and contraction ratio of gas generator. Also, the combustion test was conducted to evaluate the performance of injector and combustion chamber. And the effect of the turbulence ring was investigated on the mixing enhancement in the chamber.r.

  • PDF

Stability Analysis and Design of the Open Cycle Liquid Rocket Engine (개방형 액체로켓엔진의 안정성 분석 및 설계)

  • Jung Young-Suk;Lee Han-Ju;Lim Seok-Hee;Cho Kie-Joo;Cho Gyu-Sik;Oh Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.235-238
    • /
    • 2004
  • In the present study, the stability of turbopump through the rotor dynamics was analyzed with the location analysis method of the pole of characteristic equation for stability analysis of LRE and the design guideline for turbopump was presented according to design requirements of the LRE.

  • PDF

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Effects of Inlet-Manifold Water Addition on the Performance of Kerosene Engines (석유(石油)엔진의 흡기관내(吸氣管內)의 물 부가(附加)가 엔진성능(性能)에 미치는 영향(影響))

  • Yi, Chun Woo;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-46
    • /
    • 1983
  • This study was carried out to investigate the possibility of improving the performance of a kerosene engine with water addition. The engine used in this study was a single-cylinder, four-cycle kerosene engine with the compression ratio of 4.5. Water could be successfully added into the inlet manifold by an extra carburetor for the volumetric ratios of 5, 10, 20, and 30 percents. Variable speed tests at wide-open throttle were performed for five speed levels in the range of 1,000 to 2,200rpm for each fuel type. Volumetric efficiency and brake specific fuel consumption were determined, and brake thermal efficiency based on the lower heats of combustion of kerosene was calculated. To examine variation in fuel consumption, CO concentration, and cooling water temperature, part load tests were also performed. The results obtained are summarized as follow. (1) Brake torque increased almost in proportion to volumetric efficiency. But the ratio of increase in torque was greater than that of volumetric efficiency. Mean torque over the speed range of 1,000 to 2,200rpm increased 1, 3, 7, and 2 percents for 5, 10, 20, and 30 percents water addition, respectively. The increase in brake torque with water addition was greater at lower speeds. (2) Mean brake specific fuel consumption over the speed range of 1,000 to 2,200rpm decreased 1, 2, 3, and 3 percents for 5, 10, 20, and 30 percents water addition, respectively. (3) Mean temperature of cooling water over the speed range of 1,000 to 2,200rpm decreased 2, 4, 8, and 12 percents for 5, 10, 20, and 30 percents water addition, respectively. (4) The effects of decreasing CO concentration in the exhaust emissions with water addition were significant. At the speed range of 1,000 to 2,200rpm, CO concentration in the exhaust emissions decreased 2, 10, 23, percents for 5, 10, and 20 percents water addition, respectively. (5) Deposits were not discovered in the combustion chamber during the experiment. However, a little rust was formed in the water-supply carburetor.

  • PDF

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • 서성현;최환석;한영민;김성구
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.56-60
    • /
    • 2006
  • It is essential to predict thermodynamic properties of combustion gas with respect to a propellant mixture ratio for the development of a gas generator for a liquid rocket engine. The present study shows the temperature measurement of exit combustion gas as a function of a mixture ratio through the series of combustion tests of a fuel-rich gas generator with liquid oxygen and Jet A-1. The measurements of dynamic and static pressures, and combustion gas temperatures allowed the estimation of thermodynamic properties like a specific heat ratio, a gas constant, and a constant pressure specific heat of the combustion gas. The comparison of the experimental results with predictions made by interpolation parameters obtained from the modification of the chemical equilibrium code indicates that the interpolation method calibrated using the temperature measurements can be utilized as an effective tool for the initial design of a fuel-rich gas generator.

Study on Combustion Gas Properties of a Fuel-Rich Gas Generator (연료 과농 가스발생기의 연소 가스 물성치에 관한 연구)

  • Seo Seong-Hyeon;Han Yeoung-Min;Kim Sung-Ku;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.118-122
    • /
    • 2006
  • For the development of a gas generator of a liquid rocket engine, the prediction of thermodynamic properties of combustion gas with respect to a propellant mixture ratio becomes critical. The present study focuses on the temperature measurement of exit combustion gas as a function of a mixture ratio through combustion tests of a fuel-rich gas generator propelled by Lox/Jet A-1. The measurement of combustion dynamic and static pressures allowed indirect estimation of thermodynamic properties like specific heat ratio, gas constant, and constant pressure specific heat. Comparing the results with empirical prediction through an interpolation reveals that the interpolation method calibrated using temperature results can be utilized as an effective tool for the design of a fuel-rich gas generator.

  • PDF