• Title/Summary/Keyword: Open porosity

Search Result 113, Processing Time 0.032 seconds

Development of Electrospun Cellulose Acetate Membranes using Carbon Nanotubes for Filtration of Particulate Matter in the Air (전기방사를 이용한 탄소나노튜브 폴리머 공기정화 멤브레인 개발)

  • Park, Soyeon;Kim, Jaehyuk;Han, Sangil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.68-73
    • /
    • 2017
  • The removal of particulate matter ranging from $0.01{\mu}m{\sim}10{\mu}m$ can be performed by using membrane filters composed of fibers. Electrospinning techniques offer the production of very thin fibers with a uniform fiber diameter over conventional techniques including template synthesis, melt-blown, phase separation, etc. Air filtration will be improved with electrospun membranes due to the open pore structures, high porosity, and large surface area of the membranes. In the present study, filtration efficiency increased with pore size decrease and fiber density increase induced by carbon nanotube and the increased CA (cellulose acetate) concentration during electrospinning process.

Estimation of the zone of excavation disturbance around tunnels, using resistivity and acoustic tomography

  • Suzuki Koichi;Nakata Eiji;Minami Masayuki;Hibino Etsuhisa;Tani Tomonori;Sakakibara Jyunichi;Yamada Naouki
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • The objective of this study is to estimate the distribution of a zone disturbed by excavation (EDZ) around tunnels that have been excavated at about 500 m depth in pre-Tertiary hard sedimentary rock. One of the most important tasks is to evaluate changes in the dynamic stability and permeability of the rock around the tunnels, by investigating the properties of the rock after the excavation. We performed resistivity and acoustic tomography using two boreholes, 5 m in length, drilled horizontally from the wall of a tunnel in pre-Tertiary hard conglomerate. By these methods, we detected a low-resistivity and low-velocity zone 1 m in thickness around the wall of the tunnel. The resulting profiles were verified by permeability and evaporation tests performed at the same boreholes. This anomalous zone matched a high-permeability zone caused by open fractures. Next, we performed resistivity monitoring along annular survey lines in a tunnel excavated in pre-Tertiary hard shale by a tunnel-boring machine (TBM). We detected anomalous zones in 2D resistivity profiles surrounding the tunnel. A low-resistivity zone 1 m in thickness was detected around the tunnel when one year had passed after the excavation. However, two years later, the resistivity around the tunnel had increased in a portion, about 30 cm in thickness, of this zone. To investigate this change, we studied the relationship between groundwater flow from the surroundings and evaporation from the wall around the tunnel. These features were verified by the relationship between the resistivity and porosity of rocks obtained by laboratory tests on core samples. Furthermore, the profiles matched well with highly permeable zones detected by permeability and evaporation tests at a horizontal borehole drilled near the survey line. We conclude that the anomalous zones in these profiles indicate the EDZ around the tunnel.

Preparation and Pore-Characteristics Control of Nano-Porous Materials using Organometallic Building Blocks

  • Oh, Gyu-Hwan;Park, Chong-Rae
    • Carbon letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Recently, the control of pore-characteristics of nano-porous materials has been studied extensively because of their unique applications, which includes size-selective separation, gas adsorption/storage, heterogeneous catalysis, etc. The most widely adopted techniques for controlling pore characteristics include the utilization of pillar effect by metal oxide and of templates such as zeolites. More recently, coordination polymers constructed by transition metal ions and bridging organic ligands have afforded new types of nano-porous materials, porous metal-organic framework(porous MOF), with high degree and uniformity of porosity. The pore characteristics of these porous MOFs can be designed by controlling the coordination number and geometry of selected metal, e.g transition metal and rare-earth metal, and the size, rigidity, and coordination site of ligand. The synthesis of porous MOF by the assembly of metal ions with di-, tri-, and poly-topic N-bound organic linkers such as 4,4'-bipyridine(BPY) or multidentate linkers such as carboxylates, which allow for the formation of more rigid frameworks due to their ability to aggregate metal ions into M-O-C cluster, have been reported. Other porous MOF from co-ligand system or the ligand with both C-O and C-N type linkage can afford to control the shape and size of pores. Furthermore, for the rigidity and thermal stability of porous MOF, ring-type ligand such as porphyrin derivatives and ligands with ability of secondary bonding such as hydrogen and ionic bonding have been studied.

  • PDF

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.

Development of Deep Learning AI Model and RGB Imagery Analysis Using Pre-sieved Soil (입경 분류된 토양의 RGB 영상 분석 및 딥러닝 기법을 활용한 AI 모델 개발)

  • Kim, Dongseok;Song, Jisu;Jeong, Eunji;Hwang, Hyunjung;Park, Jaesung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.27-39
    • /
    • 2024
  • Soil texture is determined by the proportions of sand, silt, and clay within the soil, which influence characteristics such as porosity, water retention capacity, electrical conductivity (EC), and pH. Traditional classification of soil texture requires significant sample preparation including oven drying to remove organic matter and moisture, a process that is both time-consuming and costly. This study aims to explore an alternative method by developing an AI model capable of predicting soil texture from images of pre-sorted soil samples using computer vision and deep learning technologies. Soil samples collected from agricultural fields were pre-processed using sieve analysis and the images of each sample were acquired in a controlled studio environment using a smartphone camera. Color distribution ratios based on RGB values of the images were analyzed using the OpenCV library in Python. A convolutional neural network (CNN) model, built on PyTorch, was enhanced using Digital Image Processing (DIP) techniques and then trained across nine distinct conditions to evaluate its robustness and accuracy. The model has achieved an accuracy of over 80% in classifying the images of pre-sorted soil samples, as validated by the components of the confusion matrix and measurements of the F1 score, demonstrating its potential to replace traditional experimental methods for soil texture classification. By utilizing an easily accessible tool, significant time and cost savings can be expected compared to traditional methods.

Electrochemical Properties of HNO3 Pre-treated $TiO_2$ Photoelectrode for Dye-SEnsitized Solar Cells (염료감응형 태양전지용 질산 전처리된 $TiO_2$ 광전극의 전기화학적 특성)

  • Park, Kyung-Hee;Jin, En-Mei;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.441-441
    • /
    • 2009
  • Dye-sensitized solar cells (DSSCs) have been widely investigated as a next-generation solar cell because of their simple fabrication process and low coats. The cells use a porous nanocrystalline TiO2 matrix coated with a sensitizer dye that acts as the light-harvesting element. The photo-exited dye injects electrons into the $TiO_2$ particles, and the oxide dye reacts with I- in the electrolyte in regenerative cycle that is completed by the reduction of $I_3^-$ at a platinum-coated counter electrode. Since $TiO_2$ porous film plays a key role in the enhancement of photoelectric conversion efficiency of DSSC, many scientists focus their researches on it. Especially, a high light-to-electricity conversion efficiency results from particle size and crystallographic phase, film porosity, surface structure, charge and surface area to volume ratio of porous $TiO_2$ electrodes, on which the dye can be sufficiently adsorbed. Effective treatment of the photoanode is important to improve DSSC performance. In this paper, to obtain properties of surface and dispersion as nitric acid treated $TiO_2$ photoelectrode was investigate. The photovoltaic characteristics of DSSCs based the electrode fabricated by nitric acid pre-treatment $TiO_2$ materials gave better performances on both of short circuit current density and open circuit voltage. We compare dispersion of $TiO_2$ nanoparticles before and after nitric acid treatment and measured Ti oxidized state from XPS. Low charge transfer resistance was obtained in nitric acid treated sample than that of untreated sample. The dye-sensitized solar cell based on the nitric acid treatment had open-circuit voltage of 0.71 V, a short-circuit current of 15.2 mAcm-2 and an energy conversion efficiency of 6.6 % under light intensity of $100\;mWcm^{-2}$. About 14 % increases in efficiency obtained when the $TiO_2$ electrode was treated by nitric acid.

  • PDF

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Analyzing the Improvement and Using Realities for the Songrim Woodlands Management in Hadong, Gyeongsangnamdo (하동 송림 관리 및 이용실태와 개선방안 분석)

  • Hwa, Sam Young;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.315-322
    • /
    • 2013
  • This study was carried out to establish a management program and soil restoration plan through analysis of soil properties and visitor questionnaires in Songrim in Hadong, Korea. Soil bulk density in Songrim was slightly higher in the closed-woodlands ($1.31g/cm^3$) than in the open-woodlands ($1.39g/cm^3$). Soil bulk density in the closed-woodlands was higher in walking trails ($1.74g/cm^3$) than in forest areas ($1.39g/cm^3$), while the rates of pore space were lower in walking trails (42.6%) than in forest areas (50.5%). The soil porosity were lower in the closed-woodlands (34.6%) than in the open-woodlands (42.6%). Soil strength in surface soil was slightly lower in the open-woodlands ($8.5kgf/cm^2$) than in the closed-woodlands ($10.5kgf/cm^2$). The content of organic matter, total nitrogen and exchangeable cations of the woodlands was low compared with the optimum nutrient content for tree growth in Korea forest soil. According to the survey, the objective of visiting in Songrim was to enjoy recreation and landscape views. To conserve pine forest ecosystems in Songrim, the respondents said that it needs to the implement of closed-woodland periods, the establishment of smoking free zone, and the prohibition of garbage throwing and alcohol including disciplinary rules and education. Also the respondents said that pine forest ecosystem in Songrim is relatively sound, but the woodlands require the intensive management to the ecosystem and the introduction of native understory vegetation, such as grasses under pine forest ecosystem. It is recommended to designate the rest-year forest for a proper period in all woodlands to restore the Songrim soil rather than the alternation application between the rest-year for three years or non-rest-year trails, and to open partially the walking trails across the woodlands after the period. In addition, the forest within the woodland is need to designate a long-term rest-year.

Development of Porous Support with Mine Waste Materials (광산 폐기물을 활용한 다공성 담체 개발)

  • 정문영;정명채;최연왕
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2004
  • This study focused on examining the possibility of recycling mine solid waste as environmental materials, especially for porous media. Basic properties including mineralogical compositions, chemical compositions, and particle size distribution of the tailings from the Sangdong W mine were checked. The mineralogical and chemical compositions of the tailings samples were not much different in depth. According to Korean Standard Leaching Test for Wastes(KSLT), concentrations of heavy metals leached from the tailings were below the standard values. As a result of particle size analysis, the median diameter (d$_{50}$) of the tailings was in the range of 10 to 30 ${\mu}{\textrm}{m}$. The stable tailings slurry made up of 3 ${\mu}{\textrm}{m}$ in d$_{50}$ was prepared using Attrition Mill. The milling condition was 40 vol% in slurry concentration, 700 rpm in stirring speed, and 1 hour in milling time. PEI was added as dispersing agent. Concentrated slurry was extended to 3 times by foaming method. In the case of 3 times foamed slurry, the total and open porosity of ceramic supports sintered at 1,075$^{\circ}C$ for 90 minutes was about 80% and 72%, respectively. Pore size was in the range of 30∼350${\mu}{\textrm}{m}$. Therefore, the tailings could be recycled starting material for environmental materials such as macroporous ceramic support.

Spark plasma sintering of UO2 fuel composite with Gd2O3 integral fuel burnable absorber

  • Papynov, E.K.;Shichalin, O.O.;Belov, A.A.;Portnyagin, A.S.;Buravlev, I.Yu;Mayorov, V.Yu;Sukhorada, A.E.;Gridasova, E.A.;Nomerovskiy, A.D.;Glavinskaya, V.O.;Tananaev, I.G.;Sergienko, V.I.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1756-1763
    • /
    • 2020
  • The paper studies spark plasma sintering (SPS) of industrially used UO2-based fuel containing integral fuel burnable absorber (IFBA) of neutrons Gd2O3. Densification dynamics of pristine UO2 powder and the one added with 2 and 8 wt% of Gd2O3 under ultrasonication in liquid has been studied under SPS conditions at 1050, 1250, and 1450 ℃. Effect of sintering temperature on phase composition as well as on O/U stoichiometry has been investigated for UO2 SPS ceramics. Sintering of uranium dioxide added with Gd2O3 yields solid solution (U,Gd)O2, which is isostructural to UO2. SEM with EDX and metallography were implemented to analyze the microstructure of the obtained UO2 ceramics and composite UO2-Gd2O3 one, particularly, open porosity, defects, and Gd2O3 distribution were studied. Microhardness, compressive strength and density were shown to reduce after addition of Gd2O3. Obtained results prove the hypothesis on formation of stable pores in the system of UO2-Gd2O3 due to Kirkendall effect that reduces sintering efficiency. The paper expands fundamental knowledge on pros and cons of fuel fabrication with IFBA using SPS technology.