• 제목/요약/키워드: Open cross-section members

검색결과 9건 처리시간 0.021초

열린 단면 부재의 굽힘 붕괴 실험 및 해석에 관한 연구 (A Study on the Bending Collapse at the Open Cross-Section Members with Experiment and Analysis)

  • 이승철;강신유
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.132-139
    • /
    • 2004
  • The open section members have been used as the members of vehicle such as automotives, airplanes and trains. When vehicles are crashed, these members have absorption of the energy and it is necessary for retainment of the survival space, and as the result, the prediction for the displacement of members in this case of the crash of vehicles is very important. The displacements of members in this case of the crash of automotives show combined aspect of both axial collapse and bending collapse. In the rollover accident when bending collapse happen, the collapse of each members is progressed by the plastic hinge which made from bending moment, and therefore the research for the behavior of members under bending moment after collapse is necessary to determine the internal energy which the members can absorb and the deformed shapes of the members on the step of design. In this paper, the characteristics of bending collapse at the members of the open cross-section were studied with experiment and numerical analysis. We made a comparative studied of the result of the experiment, and changed the axis according to the parallel-axis theorem.

대칭 및 반 대칭으로 적층된 복합재료 채널 빔의 굽힘 거동 (Bending Behaviors of CAS and CUS Thick-walled Composite Channel Beam)

  • 박미정;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.167-171
    • /
    • 2005
  • The thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results. The correlation between thin and thick walled composite beam was achieved for two different layup configurations which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams.

  • PDF

두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동 (Bending and Torsional Behaviors of Thick Composite Channel Beam)

  • 박미정;최용진;전흥재;변준형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF

Efficient cross-sectional profiling of built up CFS beams for improved flexural performance

  • Dar, M. Adil;Subramanian, N.;Atif, Mir;Dar, A.R.;Anbarasu, M.;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제34권3호
    • /
    • pp.333-345
    • /
    • 2020
  • In the past, many efficient profiles have been developed for cold-formed steel (CFS) members by judicious intermediate stiffening of the cross-sections, and they have shown improved structural performance over conventional CFS sections. Most of this research work was based on numerical modelling, thus lacking any experimental evidence of the efficiency of these sections. To fulfill this requirement, experimental studies were conducted in this study, on efficient intermediately stiffened CFS sections in flexure, which will result in easy and simple fabrication. Two series of built-up sections, open sections (OS) and box sections (BS), were fabricated and tested under four-point loading with same cross-sectional area. Test strengths, modes of failure, deformed shapes, load vs. mid-span displacements and geometric imperfections were measured and reported. The design strengths were quantified using North American Standards and Indian Standards for cold-formed steel structures. This study confirmed that efficient profiling of CFS sections can improve both the strength and stiffness performance by up to 90%. Closed sections showed better strength performance whereas open sections showed better stiffness performance.

비대칭 연단보강재가 설치된 직교이방성 개방단면 압축재의 탄성국부좌굴 (Elastic Local Buckling of Orthotropic Open Section Compression Members with Asymmetric Edge Stiffeners)

  • 윤순종;정상균
    • Composites Research
    • /
    • 제14권4호
    • /
    • pp.1-7
    • /
    • 2001
  • 본 연구는 등분포 압축을 받는 비대칭 연단보강된 직교이방성 개방단면 구조용 부재의 탄성국부좌괄에 대한 이론적 연구의 결과이다. 비대칭 연단보강재는 비틀림강성을 무시한 보요소로 간주하였다. 플랜지판의 일부와 플랜지의 연단에 부착된 판으로 구성된 비대칭 연단보강재에 대한 이론적 해석 모델을 제시하였으며, 이 결과로부터 얻어지는 비대칭 연단보강재 단면의 도심을 지나는 축에 대한 단면2차모멘트를 계산하였다. 유도된 식을 사용하여 비대칭 연단보강된 직교이방성 I형 압축재의 국부좌굴계수를 구하였으며 그 결과를 그래프로 제시하였다.

  • PDF

Elastoplastic nonlinear behavior of planar steel gabled frame

  • Moghaddam, Sina Heyrani;Masoodi, Amir R.
    • Advances in Computational Design
    • /
    • 제4권4호
    • /
    • pp.397-413
    • /
    • 2019
  • In this paper, static nonlinear analysis of gable frame is performed using OpenSees software. Both geometric and material nonlinearities are considered in analyses. To consider large displacements, co-rotational coordinate transformation is used in software. The effects of symmetric and asymmetric support conditions including clamped and simple supports are studied. On the other hand, the material nonlinearity is reflected on analyses using Giuffre-Menegotto-Pinto steel material. Note that strain hardening characteristics are also considered in this model. Moreover, I-shaped cross-section is assumed for all members. The results are provided for different geometry properties of gable frame including shallow and deep inclined roof. It should be added that buckling and post-buckling behaviors of gable frame are investigated using related equilibrium paths. A comparison study is also implemented on the responses of buckling loads obtained for different support and geometry conditions. To trace snap-through paths completely, a displacement control method entitled arc-length is utilized. Findings show the capability of proposed model in nonlinear analysis of gable frames.

프리텐션 U형 거더 현장 제작 방법 및 정착 블록 해석적 성능 검증 (On-Site Construction Method for U-Girder with Pre-tension and Verification of Analytical Performance of Anchoring Block)

  • 박상기;김재환;정규산;서동우;박기태;장현옥
    • 한국방재안전학회논문집
    • /
    • 제15권3호
    • /
    • pp.67-77
    • /
    • 2022
  • 국내에서는 I형 거더의 장경간화를 위한 수단으로써 U형 거더 개발을 시도하였으나, 포스트텐션 긴장방식에 따라 큰 자중으로 인하여 30 m이하 철도교 적용 사례가 대표적이며, 도로교는 시공 편의성과 보급성 논리에 따라 U형 거더의 적용 사례는 많지 않다. 본 연구는 이러한 포스트텐션 방식에 제한을 두지 않고 프리텐션 방식을 적용하여 단면 감소에 따른 자중 감소와 사용재료 절감을 유도하고자 한다. 또한, U형 거더 내부 반력대를 이용한 현장 프리텐션 긴장방법을 적용하고자 한다. 프리스트레스트 콘크리트 U형 단면 거더 교량은 콘크리트 바닥판 슬래브와 합성단면으로 구성된다. 단면이 폐합되어 개방형 단면인 PSC I형 대비 저항 강성 등의 구조적 성능향상과 제작 및 가설 단계에서 시공의 안전성 증대, 그리고 자중 경감에 기인하는 형고비 감소와 교량의 미적 경관성 확보가 가능하여 매우 효율적이고 경제적인 교량이다. 이로 인하여 고품질의 공장제작 부재와 현장에서 일체 타설로 효율적인 시공이 가능할 것으로 기대된다. 본 논문에서는 프리텐션 현장 긴장 방식 소개 및 긴장을 위한 정착블럭의 해석적 성능 검증에 대한 내용을 수록하였다.

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • 제4권4호
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

지게차 충돌 위치 및 보관물류 분포에 따른 선반구조물의 거동특성분석 (Behavioral Characteristics Investigation of Rack Structure Depending on Forklift Impact Scenarios and Storage Distributions)

  • 옥승용;권오용;백신원
    • 한국안전학회지
    • /
    • 제28권6호
    • /
    • pp.49-56
    • /
    • 2013
  • The statistics of recent accidents in warehouses show that a heavy toll of lives were produced by various accidents, e.g. collision, overturn, fall, slip, exposure to harmful substances or environments, etc. Of significant concern amongst them is the collision, especially the collision between forklift and storage rack structure. Accordingly, this study focuses on behavioral characteristics of rack structure subjected to dynamic impact loading of a forklift. For this purpose, time-domain response analysis has been performed on a standard 2-bay six-story rack structure consisting of columns, beams and bracing members with perforated open section. In order to investigate the most critical scenario, the impact loads are applied in both down-aisle and cross-aisle directions, and the impact locations are also varied along the shelves of the palettes. In order to deal with storage distributions, three types of rack structures are further taken into account: original empty rack structure with no storage, half-loaded rack structure and fully-loaded rack structure. The numerical simulation results demonstrate that the dynamic characteristics of the rack structure are significantly dependent on the distribution of the storage goods and its natural period varies from 0.24sec to 1.06sec, approximately 4.4 times. Further, the parametric studies show that the forklift impact is most critical to the safety of the rack structure when it collides either at the base or at the top of the rack structure.