• Title/Summary/Keyword: Open cell foam

Search Result 38, Processing Time 0.031 seconds

Enhancement of Dimensional Stability of Compressed Open Cell Rigid Polyurethane Foams by Thermo-Mechanical Treatment

  • Ahn, WonSool
    • Elastomers and Composites
    • /
    • v.50 no.1
    • /
    • pp.30-34
    • /
    • 2015
  • Thermo-mechanical treatment process of a compressed open-cell rigid polyurethane foam (OC-RPUF), which was fabricated for the vacuum insulation panel (VIP), was studied to obtain an optimum condition for the dimensional stability by the relaxation of compressive stress. Thermo-mechanical deformation of the sample OC-RPUF was shown to occur from about $120^{\circ}C$. Yield stress of 0.36 MPa was shown at about 10% yield strain. And, densification of the foam started to occur from 75% compressive strain and could be continued up to max. 90%. Compression set of the sample restored after initial compression to 90% at room temperature was ca. 82%. Though the expansion occurred to about twice of the originally compressed thickness in case of temperature rise to $130^{\circ}C$, it could be overcome and the dimensional stability could be maintained if the constant load of 0.3 MPa was applied. As the result, a thermo-mechanical treatment process, i.e, annealing process at temperature of $130{\sim}140^{\circ}C$ for about 20 min as is the maximum compressed state at room temperature, should be required for dimensional stability as an optimum condition for the use of VIP core material.

Flow behavior of high internal phase emulsions and preparation to microcellular foam

  • Lee, Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.153-160
    • /
    • 2004
  • Open microcellular foams having small-sized cell and good mechanical properties are desirable for many practical applications. As an effort to reduce the cell size, the microcellular foams combining viscosity improvers into the conventional formulation of styrene and water system were prepared via high internal phase emulsion polymerization. Since the material properties of foam are closely related to the solution properties of emulsion state before polymerization, the flow behavior of emulsions was investigated using a controlled stress rheometer. The yield stress and the storage modulus increased as viscosity improver concentration and agitation speed increased, due to the reduced cell size reflecting both a competition between the continuous phase viscosity and the viscosity ratio and an increase of shear force. Appreciable tendency was found between the rheological data of emulsions and the cell sizes of polymerized foams. Cell size reduction with the concentration of viscosity improver could be explained by the relation between capillary number and viscosity ratio. A correlative study for the cell size reduction with agitation speed was also attempted and the result was in a good accordance with the hydrodynamic theory.

Fluidity and Mechanical Properties of Open Cell AZ31 Mg Alloy Foam

  • Yue, Xue-Zheng;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.32 no.3
    • /
    • pp.150-156
    • /
    • 2012
  • 발포금속은 초경량 재료로서 폐기공과 개기공의 두 가지 형태의 구조를 지니고 있으며 폐기공은 내충격성, 흡음성, 단열성의 기능을 지니고 있고, 개기공은 필터, 생체지지대, 촉매재, 열방출재 등으로 사용되고 있다. 개기공발포재는 삼차원 구조모양으로 프리커서를 이용한 압력정밀주조나 기공입자용출법으로 제조하고 있으나 기공의 크기나 셀의 형상, 두께 등을 조절하기에 어려움이 있다. 이를 해결하기 위하여 환경친화적인 펄라이트를 사용하여 목적하는 크기의 그래뉼을 제조한 후, 용융마그네슘합금을 감압주조법으로 주조하여 그래뉼의 크기로 기공율을 조절하고, 주형의 온도와 압력에 따른 유동의 길이를 측정하였다. 그래뉼 직경이 2.3 $mm{\O}$ 일때에 주형의 온도 $300^{\circ}C$ 이상, 압력이 5000 Pa 이상에서 유동길이 6.5 cm 이상을 얻었다.

Effect of Process Conditions on the Microstructure of Particle-Stabilized Al2O3 Foam

  • Ahmad, Rizwan;Ha, Jang-Hoon;Hahn, Yoo-Dong;Song, In-Hyuck
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.278-284
    • /
    • 2012
  • $Al_2O_3$ foam is an important engineering material because of its exceptional high-temperature stability, low thermal conductivity, good wear resistance, and stability in hostile chemical environment. In this work, $Al_2O_3$ foams were designed to control the microstructure, porosity, and cell size by varying different parameters such as the amount of amphiphile, solid loading, and stirring speed. Particle stabilized direct foaming technique was used and the $Al_2O_3$ particles were partially hydrophobized upon the adsorption of valeric acid on particles surface. The foam stability was drastically improved when these particles were irreversibly adsorbed at the air/water interface. However, there is still considerable ambiguity with regard to the effect of process parameters on the microstructure of particle-stabilized foam. In this study, the $Al_2O_3$ foam with open and closed-cell structure, cell size ranging from $20{\mu}m$ to $300{\mu}m$ having single strut wall and porosity from 75% to 93% were successfully fabricated by sintering at $1600^{\circ}C$ for 2 h in air.

Effect of Gas Channel/Rib Width in Solid Oxide Fuel Cells (고체산화물 연료전지에서 가스채널/리브 폭의 영향에 관한 연구)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.109-115
    • /
    • 2017
  • Using the computational fluid dynamics (CFD) technique, we performed a numerical simulation in anodesupported solid oxide fuel cell (SOFC). The effect of gas channel/rib width on the cell performance and temperature uniformity was investigated in planar type SOFC. The open source CFD toolbox, OpenFOAM, was used as a numerical analysis tool. As a result, the effect of gas channel/rib width on the cell performance and temperature uniformity was not significant if the oxygen depletion is not occurring. On the other hand, the usage of a wide rib and operation at high current density may lead to performance degradation due to oxygen depletion.

Reinforced Polymer/Clay Nanocomposite Foams with Open Cell Prepared via High Internal Phase Emulsion Polymerization (고내상 에멀션 중합에 의해 제조된 열린 기공을 갖는 고장도 고분자/점토 나노복합 발포체)

  • Song, In-Hee;Kim, Byung-Chul;Lee, Seong-Jae
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.183-188
    • /
    • 2008
  • Reinforced open cell micro structured foams were prepared by the polymerization of high internal phase emulsions incorporating inorganic thickeners. Organoclays were used as oil phase thickener, and sodium montmorillonite was used as aqueous phase thickener. Rheological properties of emulsions increased as oil phase thickener concentration and agitation speed increased, due to the reduced drop size reflecting both competition between continuous and dispersed phase viscosities and increase of shear force. Drop size variation with thickener concentration could be explained by a dimensional analysis between capillary number and viscosity ratio. Upon the foams polymerized by the emulsions, compression properties, such as crush strength and Young's modulus were measured and compared. Among the microcellular foams, the foam incorporated with an organoclay having reactive group showed outstanding properties. It is speculated that the exfoliated silicate layers inside polystyrene matrix, resulting in nanocomposite foam, are the main reason why this foam has enhanced properties.

Characterization of Flame-Retardant Foam Asphalt (난연성 폼아스팔트 특성에 관한 연구)

  • Hong, Young-Keun
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.246-253
    • /
    • 2012
  • This study was carried out to prepare a type of warm mix asphalt. Through urethane foam and emulsion asphalt preparation techniques a protocol of asphalt foam was made. Then three kinds of flame retardant agents were added in there to alleviate the inherent susceptability of asphalt and foam material to flame and thus flame retardant asphalt foam was made. The internal structure of form asphalt was composed of open cell. The higher the NCO% brought the larger the cell and the stronger also. Asphalt increased the strength of the foam. Among the flame retardant agents employed tritorylphosphate was the most effective.

Foaming Characteristics and Physical Properties of Ethylene Vinyl Acetate Copolymer Foams (Ethylene Vinyl Acetate Copolymer 발포체의 발포특성 및 물리적 특성)

  • Kim, Jin-Tae;Son, Woo-Jung;Ahn, Byung-Hyun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • Physical properties of foams depend on the density of foams, Physical properties of base polymers, open ceil contents, and cell structures including the size, size distribution, shape of ceil and the thickness of membrane and strut. The density of foam is affected by raw materials, concentration oi crosslinking agent and blowing agent and process parameters such as processing technique and condition. Ethylene vinyl acetate copolymer(EVA) foam is a crosslinked cellular material. The foaming characteristics and physical properties of EVA foam are affected by decomposition rate of blowing agent. In this study, the decomposition rate of blowing agent and crosslinking rate, foaming characteristics and physical properties of foams were evaluated. The slow decomposition rate of blowing agent results in low density foam, good shock absorption property and uniform cell size distribution compared to the high decomposition rate of blowing agent.

  • PDF

Effect of Flow Direction on Temperature Uniformity in Solid Oxide Fuel Cell (고체산화물 연료전지의 유동방향에 따른 온도 균일성 영향)

  • Jeon, Dong Hyup;Shin, Dong-Ryul;Ryu, Kwang-Hyun;Song, Rak-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.10
    • /
    • pp.667-673
    • /
    • 2017
  • We investigated the temperature uniformity in an anode-supported solid oxide fuel cell, using the open source computational fluid dynamics (CFD) toolbox, OpenFOAM. Numerical simulation was performed in three different flow paths, i.e., co-flow, counter-flow, and cross-flow paths. Gas flow in a porous electrode was calculated using effective diffusivity while considering the effect of interconnect rib. A lumped internal resistance model derived from a semi-empirical correlation was implemented for the calculation of electrochemical reaction. The result showed that the counter-flow path displayed the most uniform temperature distribution.

난연 및 전기전도성 폐PET/PE 복합 발포체의 제조 및 특성

  • 송종혁;강영구
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.242-247
    • /
    • 2001
  • Foam Plastics, cellular plastics, expanded plastics, plastic foam 등 여러 가지 이름으로 불리우고 있는 발포플라스틱은 plastic matrix 내에 무수한 cell이 open 형태 혹은 closed 형태로 존재하는 플라스틱 재료이며/sup 1)/ 원료플라스틱 보다 경량성, 열전도성, 충격흡수성 등 제반물성이 우수하여 포장재료, 보온재, 완충재 및 각종 구조재료로써 널리 사용되고 있으며 소재 plastic의 특성에 따라 PE, PP, PVC, PS, ABS 등 다양하게 개발되어 있다.(중략)

  • PDF