KSII Transactions on Internet and Information Systems (TIIS)
/
제18권9호
/
pp.2692-2716
/
2024
Over the past decade, law enforcement organizations have been dealing with the development of cybercrime. To address this growing problem, law enforcement organizations apply various digital forensic (DF) tools and techniques to investigate crimes involving digital devices. This ensures that evidence is admissible in legal proceedings. Consequently, DF analysts may need to invest more in proprietary DF hardware and software to maintain the viability of the DF lab, which will burden budget-constrained organizations. As an alternative, the open source DF tool is considered a cost-saving option. However, the admissibility of digital evidence obtained from these tools has yet to be tested in courts, especially in Malaysia. Therefore, this study aimed to explore the admissibility of digital evidence obtained through open source DF tools. By reviewing the existing literature, the factors that affect the admissibility of the evidence produced by these tools in courts were identified. Further, based on the findings, a conceptual framework was developed to ensure the admissibility of the evidence so that it will be accepted in the court of law. This conceptual framework was formed to outline the factors affecting the admissibility of digital evidence from open source DF tools, which include; 1) The Availability and Capability of open source DF tools, 2) the Reliability and Integrity of the digital evidence obtained from open source DF tools, 3) the Transparency of the open source DF tools, and 4) the Lack of Reference and Standard of open source DF tools. This study provides valuable insights into the digital forensic field, and the conceptual framework can be used to integrate open source DF tools into digital forensic investigations.
많은 정보통신기술 기업들은 자체적으로 개발한 인공지능 기술을 오픈소스로 공개하였다. 예를 들어, 구글의 TensorFlow, 페이스북의 PyTorch, 마이크로소프트의 CNTK 등 여러 기업들은 자신들의 인공지능 기술들을 공개하고 있다. 이처럼 대중에게 딥러닝 오픈소스 소프트웨어를 공개함으로써 개발자 커뮤니티와의 관계와 인공지능 생태계를 강화하고, 사용자들의 실험, 적용, 개선을 얻을 수 있다. 이에 따라 머신러닝 분야는 급속히 성장하고 있고, 개발자들 또한 여러가지 학습 알고리즘을 재생산하여 각 영역에 활용하고 있다. 하지만 오픈소스 소프트웨어에 대한 다양한 분석들이 이루어진 데 반해, 실제 산업현장에서 딥러닝 오픈소스 소프트웨어를 개발하거나 활용하는데 유용한 연구 결과는 미흡한 실정이다. 따라서 본 연구에서는 딥러닝 프레임워크 사례연구를 통해 해당 프레임워크의 도입 전략을 도출하고자 한다. 기술-조직-환경 프레임워크를 기반으로 기존의 오픈 소스 소프트웨어 도입과 관련된 연구들을 리뷰하고, 이를 바탕으로 두 기업의 성공 사례와 한 기업의 실패 사례를 포함한 총 3 가지 기업의 도입 사례 분석을 통해 딥러닝 프레임워크 도입을 위한 중요한 5가지 성공 요인을 도출하였다: 팀 내 개발자의 지식과 전문성, 하드웨어(GPU) 환경, 데이터 전사 협력 체계, 딥러닝 프레임워크 플랫폼, 딥러닝 프레임워크 도구 서비스. 그리고 도출한 성공 요인을 실현하기 위한 딥러닝 프레임워크의 단계적 도입 전략을 제안하였다: 프로젝트 문제 정의, 딥러닝 방법론이 적합한 기법인지 확인, 딥러닝 프레임워크가 적합한 도구인지 확인, 기업의 딥러닝 프레임워크 사용, 기업의 딥러닝 프레임워크 확산. 본 연구를 통해 각 산업과 사업의 니즈에 따라, 딥러닝 프레임워크를 개발하거나 활용하고자 하는 기업에게 전략적인 시사점을 제공할 수 있을 것이라 기대된다.
본고는 크게 두가지 주제로 구성이된다. 첫번째로는 HTML5 기반의 mobile Web application platform 구조에 대해서 상세히 소개한다. Web application platform은 기술 구조상 mobile OS에 내재되어 native형태로 배포되는 Browser engine을 포함한 platform 부분과 native Web platform 상에서 구동되는 HTML5 application framework 부분으로 구성된다. HTML5 application framework 구축을 위해 시장에서 널리쓰이는 open source로서 jQuery Mobile framework을 소개한다. 두번째로 해당 Web platform상에서 동작하는 Web application 개발시 부디칠 각종 성능 이슈 및 그것을 해결하기 위한 접근법을 다섯가지 기술 영역으로 나누어, 각 영역별로 적용 가능한 실기를 다룬다. 마지막으로 최적화시 사용가능한 각종 open source profiling 및 성능 최적화 tool에 대해서 소개한다.
무선인터넷이 보급되고 IoT 기술이 발달함에 따라 여러 종류의 센서 디바이스가 발전하였다. 그리고 IoT 환경에서 사용자들의 요구를 충족하는 다양한 서비스 개발을 위해 오픈소스 하드웨어가 도입되었다. 하지만 오픈소스 하드웨어는 개발 인력의 부족으로 인해 충분히 활용되지 못하고 있다. 따라서 본 논문에서는 오픈소스 하드웨어에서 효율적으로 임베디드 소프트웨어 개발을 교육하기 위한 소프트웨어 프레임워크를 제안한다. 제안하는 프레임워크는 비주얼 프로그래밍 언어와 빠른 결과 확인을 통해 다양한 오픈소스 하드웨어에서 빠르고 직관적으로 임베디드 소프트웨어를 개발할 수 있게 한다. 또한 제안한 프레임워크를 실제 오픈소스 하드웨어 개발 환경에 구현하여 장단점을 분석하고 개선방안을 확인하였다.
In this paper, we investigate automated data validation techniques for artificial intelligence training, and also disclose open-source frameworks, such as Google's TensorFlow Data Validation (TFDV), that support automated data validation in the AI model development process. We also introduce an experimental study using public data sets to demonstrate the effectiveness of the open-source data validation framework. In particular, we presents experimental results of the data validation functions for schema testing and discuss the limitations of the current open-source frameworks for semantic data. Last, we introduce the latest studies for the semantic data validation using machine learning techniques.
가상화폐는 익명성과 탈중앙화 특성으로 인해 범죄에 악용될 가능성이 높으며, 이에 따라 효과적인 추적 기법의 개발이 요구된다. 공개출처정보는 공공 데이터, 소셜 미디어, 온라인 포럼 등 다양한 오픈 소스 데이터를 분석하여 범죄자의 신원 파악과 가상화폐 자금 흐름 추적에 유용한 정보를 제공할 수 있다. 본 논문에서는 공개출처정보의 활용 방안을 종합적으로 제시하고자 한다. 이를 위해 우선 가상화폐의 현황과 추세 및 관련 범죄 현황에 대해 살펴보고, 공개출처정보의 개념 및 방법에 대해 알아본다. 이후 가상화폐 관련 범죄의 추적 및 분석을 위한 공개출처정보의 5가지 방법과 7가지 프레임워크를 중점 분석하고, 공개출처정보 방법과 프레임워크를 적용하는 통합 기법을 제시한다.
This study develops an Education framework for users who need public open data for workplace etiquette education in a timely manner by mobile application. It facilitates utilizing efficiently Workplace etiquette contents that scattered in various platforms such as blogs, Youtube and web-sites run by private education agencies. Furthermore, it makes Public open data for workplace etiquette through gathering 'metadata', which is a comprehensive source of workplace etiquette. Accordingly, framework changes recognition about necessity of workplace etiquette education positively and suggests method that can promote effective workplace etiquette education. If the system in the study can provide public open data of workplace etiquette education, many young job applicants and workers will have a proper perception on it and sound workplace etiquette culture will be settled in the companies. Public data has been rising as a vital national strategic asset these days. Hopefully the public data will pave a way to discover the blue ocean in the market and open up a new type of businesses.
Purpose - Open source software has high utilization in most of the server market. The utilization of open source software is a global trend. Particularly, Internet infrastructure and platform software open source software development has increased rapidly. Since 2003, the Korean government has published open source software promotion policies and a supply promotion policy. The dynamism of the open source software market, the lack of relevant expertise, and the market transformation due to reasons such as changes in the relevant technology occur slowly in relation to adoption. Therefore, this study proposes an assessment model of services provided in an open source software service company. In this study, the service level of open source software companies is classified into an enterprise-level assessment area, the service level assessment area, and service area. The assessment model is developed from an on-site driven evaluation index and proposed evaluation framework; the evaluation procedures and evaluation methods are used to achieve the research objective, involving an impartial evaluation model implemented after pilot testing and validation. Research Design, data, and methodology - This study adopted an iteration development model to accommodate various requirements, and presented and validated the assessment model to address the situation of the open source software service company. Phase 1 - Theoretical background and literature review Phase 2 - Research on an evaluation index based on the open source software service company Phase 3 - Index improvement through expert validation Phase 4 - Finalizing an evaluation model reflecting additional requirements Based on the open source software adoption case study and latest technology trends, we developed an open source software service concept definition and classification of public service activities for open source software service companies. We also presented open source software service company service level measures by developing a service level factor analysis assessment. The Behavior-Structure-Evolution Evaluation Model (BSEM) proposed in this study consisted of a rating methodology for calculating the level that can be granted through the assessment and evaluation of an enterprise-level data model. An open source software service company's service comprises the service area and service domain, while the technology acceptance model comprises the service area, technical domain, technical sub-domain, and open source software name. Finally, the evaluation index comprises the evaluation group, category, and items. Results - Utilization of an open source software service level evaluation model For the development of an open source software service level evaluation model, common service providers need to standardize the quality of the service, so that surveys and expert workshops performed in open source software service companies can establish the evaluation criteria according to their qualitative differences. Conclusion - Based on this evaluation model's systematic evaluation process and monitoring, an open source software service adoption company can acquire reliable information for open source software adoption. Inducing the growth of open source software service companies will facilitate the development of the open source software industry.
OpenBR은 안면인식 관련 새로운 방식의 연구, 기존 알고리즘 개선, 상용 시스템과 상호 작용, 인식 성능 측정, 자동화 된 생체 인식 시스템을 배치하기 위한 프레임 워크입니다. 신속한 알고리즘 프로토타이핑을 용이하게 하기 위해 고안되었으며 성숙한 핵심 프레임 워크, 유연한 플러그인 시스템 및 개방형 및 폐쇄형 소스 개발 지원을 특징으로 한다. 기성의 알고리즘은 얼굴 인식, 연령 산정 및 성별 추정과 같은 특정 양식에 대해서도 사용할 수 있다. 본 논문에서는 OpenBR의 프레임 워크의 구성방법에 대해서 기술하고 지원되는 프로그램을 통해서 이용한 안면인식, 성별추정, 나이추정 구현하고 기술하였다.
Participants in Open Source Software (OSS) development projects usually contribute voluntarily without expecting direct compensation for their work. One of the central puzzles raised by the success of OSS is the motivation of the participants; why top-notch programmers choose to write software that is released for no fee. In order to respond to this peculiarity employing a meta-research method, we first identify and review theoretical perspectives from diverse disciplines including economics, sociology, political science, anthropology, psychology, and management. Then, we suggest a comprehensive framework that provides a holistic understanding of the puzzle in question. Reviewing key empirical studies based on the suggested framework, we also suggest a future research agenda.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.