• Title/Summary/Keyword: Open Channel Flow

Search Result 287, Processing Time 0.031 seconds

A Simulation to Find Rotation Efficiency according to the Draft Changes of Waterwheel in Open Rectangular Channel (사각형 개수로에서의 수차 흘수 변화에 따른 회전 효율 파악을 위한 시뮬레이션)

  • Lee, Kyong-Ho;Park, Hee-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.113-121
    • /
    • 2013
  • In this paper, simulations were carried out to determine the efficiency of the rotation efficiency according to the draft of waterwheel in open rectangular channel. In the small hydroelectric generators to get the highest efficiency of waterwheel is very important. But the presence of various elements(free water surface flow, non-uniform velocity distribution because of the waterways wall friction etc) makes it difficult to create a mathematical formula. In this paper, we made a scale model and perform a physical simulation where the draft, gradient and flux is variable. Scale modelling with 10-step draft, 3-step gradients and 2-step flux, as well were constructed then computerized automatic experimental system were configured to acquire the rotational efficiency vs. draft of itself. Rotational efficiency is analyzed as for the draft of waterwheel using the acquired data by varying the gradient and flux of canal. Reviewing the analyzed data, it is confirmed that phenomena of efficiency shown at previous and present experiment is similar and revealed that computerized system shows more sophisticated numerical figures.

Re-evaluation of Change of Mean Velocity Profile in Open-Channel Turbulent Flows due to Sediment Particles (유사입자에 의한 개수로 난류 유속 분포의 변화에 대한 재검토)

  • Yu Kwon-Kyu;Yoon Byung-Man
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.9 s.170
    • /
    • pp.727-735
    • /
    • 2006
  • It is well known that sediment particles introduced in open-channel turbulent flows change mean velocity profile, since Vanoni suggested the reduction of the Karman constant in 1946. However, how the sediment particles take such a role and what parameters would be changed have been debated up to now. Some researchers, on the other hand, have insisted that the constant would not be changed regardless of introducing sediment particles. The present study is a careful re-evaluation of the previous studies on this issue. The study revealed some questionable approaches or methods in the decision of the previous researches and found the reason why this issue has been debated for a long time. The result indicated that the Karman number is reduced by adding sediment particles, but the amount of reduction is much smaller than the previous researches insisted. Finally, the present study proposes a mechanism of the Karman number reduction due to sediment particles.

Numerical Study on the Design of Vertical Shaft based on the Falling Mechanism of Ore Particles in Glory Hole Mining Method (글로리 홀 채광법에서 광체의 낙하메커니즘을 통한 수갱 안전설계 연구)

  • Choi, Sung-Oong;Kim, Jaedong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.17-23
    • /
    • 2010
  • Recently, a large number of open-pit mines are planning to change their mining method to underground types because the environmental concerns and legal regulations are increased with a rise in the standard of living. The K silica mine, which is one of them and located in Kyunggi province, is planning the establishment of a vertical shaft which will be used for ore-pass channel in their new glory hole mining method. This vertical shaft will be designed to join with a horizontal gangway excavated from the ground level. In this new mining system, the excavated ore particles will be stored inside a shaft and transported out with a help of a conveyor belt. Therefore the hang-up of ore particles in a shaft, the control of gate at the bottom of a shaft, the installation of dog-leg at the gate should be investigated identically. In this study, the PFC-2D code which is one of the discrete element numerical methods has been applied to simulate the particle flow mechanism in a shaft, and the optimum mine design has been proposed to maximize the productivity and to minimize the system damage.

  • PDF

Optimal layout of tidal current turbine array in open channel flow (개수로 흐름에서 조류 터빈의 최적 배열)

  • Han, Jisu;Jung, Jaeyoung;Hwan, Hwang Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.433-433
    • /
    • 2021
  • 본 연구는 개수로 흐름에서 조류발전단지의 터빈 최적 배열의 거시적 특성에 관한 연구를 수행하였다. 천수방정식을 통해 직사각형 개수로의 흐름장을 해석하였고, 상류와 하류단에 대해 각각 유입경계조건(inlet boundary condition)과 Flather 형식의 개방경계조건(open boundary condition)을 부여하여 일정 유량으로 흐르는 개수로 흐름을 구현하였다. 더불어, Strickler의 법칙을 확장한 반력공식을 연계하여, 개수로 흐름에 대한 조류 터빈의 영향을 반영하였다. 주어진 상류의 흐름 조건에 대해 조류발전량을 최대로 하는 최적 배열을 구하기 위해 터빈 반력모형을 연계한 천수방정식, 터빈간 최소간격, 그리고 발전단지영역을 제한조건으로 하는 발전량 최대화 문제를 구성하였다. 여기서 조류 터빈의 위치를 나타내는 벡터를 설계변수로 두었는데, 설계되는 터빈의 수가 증가함에 따라 최적화 문제의 계산량이 증가하지 않도록 수반법(adjoint method)을 경사도기반법(gradient-based method)에 연계한 방법이 이용되었다. 다수의 터빈초기배치로 상당한 수치실험이 수행되었고, 발전량 최대화를 이루도록 최적화된 터빈의 배치들이 큰 규모에서 고유한 형상으로 수렴함을 확인하였다. 이러한 특성은 발전단지의 너비와 터빈의 최소간격의 함수로 정의된 무차원수 E를 바탕으로 설명되었다. 구체적으로, E가 1보다 작을 때에는 선형배열이 최적배열로 나타났고, E가 1을 넘어 점차 커짐에 따라 하류에 오목한 형상을 보이다가 V-형태로 발전하는 양상을 보였다. 또한, 어느 임계 수 이상의 터빈이 배치되는 경우 일열 배열을 유지하지 못하고 이열 배열로 분리됨이 관찰되었다.

  • PDF

A Comparative Study on Direct Instrument Methods in Open Channel for Measuring River Water Usage (하천수 사용량 계측을 위한 개수로에서의 직접 계측방법 비교 연구)

  • Baek, Jongseok;Kim, Chiyoung;Lee, Kisung;Kang, Hyunwoong;Song, Jaehyun
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Continuous and accurate instrument of river water usage is needed for sustainable river water management. Although the instrument methods applicable to each point of use of river water are different, more precise direct instrument methods are required at the point of major open channel. Users of river water should select appropriate direct instrument methods to measure usage, but there is a lack of standards and verification research. In this study, the H-Q rating curve method, ultrasonic method, and microwave method were applied directly to the test basin in the upper basin of Mangyeong river, and the accuracy of measurement data was evaluated by comparing absolute error between discharge data calculated by instrument method. When comparing the calculated discharge of point units, the ultrasonic method showed the best results of the actual measurement. Through continuous instrument, the sum of the daily and monthly units was compared, and the ultrasonic and microwave methods were shown to be highly accurate. Based on the results of this study, it is hoped that the appropriate direct measurement method can be selected according to the importance of the river water use facility, considering that the ultrasonic method and the microwave method are relatively costly compared to the water level-flow relationship method.

NUMERICAL ANALYSIS FOR FLOW CHARACTERISTICS WITH GEOMETRIC SHAPE AND CONTROL CONDITIONS IN SUBSEA BY-PASS VALVE (심해저 바이패스 밸브의 기하학적 형상과 제어조건에 따른 유동특성에 관한 수치해석적 연구)

  • Lee, J.H.;Min, C.H.;Oh, J.W.;Cho, S.;Kim, H.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2016
  • The present study has been carried out to analyze the flow characteristics with geometric shape and control conditions in subsea by-pass valve. The function of by-pass valve is to prevent reverse flow. In this study, the static analysis has been perform for analyzing fluid flow in open state. In order to consider the turbulent effect, the standard ${\kappa}-{\varepsilon}$ model was used. A variety of parametric studies, such as by-pass valve type or size, volume flow rate, leakage hole size, leakage hole position, block type, block shape, were performed. The pressure difference across the valve in the model broadened the flow channel cross-sectional area was greater than the base model for the same operating conditions. As the pipe diameter in the block decreases the pressure difference is greatly increased. The pressure difference according to block shape such as edge type and round was almost negligible. For the same Reynolds number the pressure difference was little changed according to the size of the valve.

Measurements of turbulent flows downstream of a spur dike at different Froude numbers (Froude 수 변화에 따른 수제 하류 난류 흐름 측정)

  • Lee, Jiyong;Kim, Yeongkyu;Cha, Jun-Ho;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.2
    • /
    • pp.115-123
    • /
    • 2019
  • The effects of the Froude numbers on turbulent flow patterns downstream of a non-submerged spur dike were investigated in a laboratory flume. Three-dimensional velocities and water depths were measured using Acoustic Doppler Velocimetry and distance sensors under three Froude number conditions ($Fr_d=0.31$, 0.38, and 0.46). The results show that there are marginal differences in the velocity fields downstream of a spur dike due to the change of the Froude number. However, an increase of the Froude number was found to reduce cross-sectional area in the flow and to increase the strength of the jet-like flow. The jet-like flow was observed to displace the location of the maximum turbulence kinetic energy within a cross section toward the inner bank in the transverse direction.

Analysis of Factors in Visual Preference for River Scenery to estimate the Optimal Ratio of Water Surface Width.River Width - With a Focus on the Youngsan and Sumjin Rivers - (적정 수면폭.하천폭비 산정을 위한 하천경관의 시각적 선호요인 분석 - 영산강과 섬진강을 중심으로 -)

  • Yoo, Sang-Wan;Lee, Joo-Heon;Hong, Hyoung-Soon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.1 s.120
    • /
    • pp.28-35
    • /
    • 2007
  • The purpose of this study is to evaluate the visual preference factors for river scenery, which can vary according to changes in water levels, to estimate the optimal ratio of water surface/river width. Five locations on the Youngsan and Sumjin Rivers were selected as representative samples and field survey data such as channel geometry with water levels were prepared to develop the slide of river scenery, To estimate the level of satisfaction in river scenery, slides of 4 different water levels at each of the representative locations were developed through questionnaire. To analyse the correlation between the visual preference for river scenery and preference factors, a multi regression analysis method was adopted in this study. According to the results of the multi regression analysis, Factor B(Aesthetic factors) have the greatest affect on visual preferences and Factor A(A Feeling of Open space and Physical factors) affect significantly to visual preferences for river scenery. The results of analysis shows that the most preferred W/B ratio varies from 0.5 to 0.7 and this result indicates that many people prefer high levels river flow to maintain a natural and harmonious view of rivers. The results of this study will contribute to the field of river landscape design and river restoration projects in order to maximize the human being's satisfaction as a part of nature.

On the Length Scale and the Wall Proximity Function in the Mellor-Yamada Level 2.5 Turbulence Closure Model for Homogeneous Flows

  • Lee, Jong-Chan;Jung, Kyung-Tae
    • Journal of the korean society of oceanography
    • /
    • v.32 no.2
    • /
    • pp.75-84
    • /
    • 1997
  • Relation between the length scale and the wall proximity function in the Mellor-Yamada level 2.5 turbulence closure model has been investigated through various experiments using a range of wall proximity functions. The model performance has been evaluated quantitatively by comparing with laboratory data for wind-driven flow (Baines and Knapp, 1965) and for open-channel flows without and with adverse wind action (Tsuruya, 1985). Comparison shows that a symmetric wall proximity function used by Blumberg and Mellor(1987) gives rise to current profiles with better accuracy than asymmetric wall proximity functions considered. It is noted that in modelling homogeneous flows the length scale 1= 0.31${\|}$z${\|}$(1+z/h) can be used with tolerable accuracy.

  • PDF

A three-dimensional numerical model for shallow water flows using a free surface correction method (자유수면 보정기법을 이용한 3차원 천수유동 수치모형)

  • Jang, Won-Jae;Lee, Seung-Oh;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.181-185
    • /
    • 2007
  • A free-surface correction(FSC) method is presented to solve the 3-D shallow water equations. Using the mode splitting process, FSC method can simulate shallow water flows under the hydrostatic assumption. For the hydrostatic pressure calculation, the momentum equations are firstly discretized using a semi-implicit scheme over the vertical direction leading to the tri-diagonal matrix systems. A semi-implicit scheme has been adopted to reduce the numerical instability caused by relatively small vertical length scale compare to horizontal one. and, as the free surface correction step the final horizontal velocity fields are corrected after the final surface elevations are obtained. Finally, the vertical final velocity fields can be calculated from the continuity equation. The numerical model is applied to the calculation of the simulation of flow fields in a rectangular open channel with the tidal influence. The comparisons with the analytical solutions show overall good agreements between the numerical results and analytical solutions.

  • PDF