• Title/Summary/Keyword: Opacifier

Search Result 8, Processing Time 0.026 seconds

Characteristics of Opal Glass by Calcium Phosphate Opacifier for a LED Light Diffuser (Calcium Phosphate 유백제 투입량에 따른 LED Diffuser용 유백유리의 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • We fabricated translucent opal glass to replace the polycarbonate diffuser in LED lighting systems in order to solve the durability problem. Batch materials of opal glass with a composition of calcium phosphate were created and melted at $1550^{\circ}C$, and the effect of opaqueness was identified by an addition of 1~7% calcium phosphate as an opacifier raw material. As a result, translucent opal glass was obtained by the melting of the mixed batch materials with a composition of more than 5% calcium phosphate glass at $1550^{\circ}C$ for 2 hrs, which had excellent optical properties for the diffuser of a LED lighting system with no dazzling from direct light by a high haze value exceeding 90% and a low parallel transmittance value of about 5%. For the thermal properties, the thermal expansion coefficient was found to be $5.6{\sim}5.9{\times}10^{-6}/^{\circ}C$ and the softening point was $874{\sim}884^{\circ}C$. In addition, good thermal properties such as good thermal shock resistance and feasibility for use with a general manufacturing process during the forming of glass tubes and bulbs were noted. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting due to its high heat resistance and high durability as a replacement for a polycarbonate diffuser.

Mechanical Strength and Thermal Conductivity of Silica Aerogels Opacified by Adding Oxides (산화물 첨가에 의한 불투명화 실리카 에어로겔의 기계작 강도 및 열전도도)

  • 손봉희;김계태;현상훈;성대진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.8
    • /
    • pp.829-834
    • /
    • 1999
  • The silica aerogels opacified via adding oxides were prepared by the sol-gel supercritical drying technique and their characteristics of mechanical strength and thermal conduction were investigated. The compressive strength of SiO2-10 mol% TiO2 and SiO2-10mol% Fe2O3 aerogels were 0.11 and 0.047 MP a respectively much higher than 0.025 MPa of pure silica aerogels. The thermal conductivity of silica aerogels opacified by TiO2 was as low as 0.02505 W/m${\cdot}$K at $400^{\circ}C$ It was found that the TiO2 -opacifier for improving mechanical strength and suppressing high temperature conduction of pure silica aerogels was more effective than the Fe2O3 -opacifier

  • PDF

Effects of forming and cooling temperature on the opaque properties of translucent opal glass for the glass diffuser of LED lighting (LED 조명용 반투명 유리 광확산판에 있어서 성형 및 냉각온도가 유백특성에 미치는 영향)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.5
    • /
    • pp.246-254
    • /
    • 2013
  • Translucent opal glass was fabricated in order to substitute polycarbonate diffuser of LED lighting for the purpose of improving the durability problem. Calcium phosphate was used for the opacifier of opal glass and melted at $1550^{\circ}C$ for 2 hrs in electric furnace. Because opal glass was made by phase separation and growth of opacifier grains during cooling procedure after forming of melted glass, we identified the effect of opaque properties by the change of forming and cooling temperature, as R.T. (room temperature), $850^{\circ}C$, $1100^{\circ}C$ and $1200^{\circ}C$. As the results, it had excellent optical properties for the diffuser of LED lighting in the fabricated sample of forming and cooling at $1200^{\circ}C$, with no dazzling from direct light by high haze value over 82 % and low parallel transmittance value under 10 %. For the thermal properties, it had expressed thermal expansion coefficient of $6.352{\times}10^{-6}/^{\circ}C$ and softening point of $839^{\circ}C$.

Effect of Ceramic Fibers and SiC Opacifiers on Thermal Conductivities of Fumed Silica-Based Thermal Insulation Media (탄화규소 불투명화재와 세라믹섬유가 Fumed 실리카 단열재의 열전도도에 미치는 영향)

  • Kwon, Young-Pil;Kwon, Hyuk-Chon;Park, Sung;Lee, Jae-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.12
    • /
    • pp.747-750
    • /
    • 2007
  • The thermal conductivities of nano-sized fumed silica-based insulation media were investigated by varying a mean particle size of the silicon carbide opacifiers and ceramic fiber content. Opacifying effect of ceramic fiber and silicon carbide powders was discussed in terms of their content and the mean particle size of them. As the fiber contents increased from 10 wt% to 30 wt% in a material, its thermal conductivity at temperatures of about $620^{\circ}C$ decreased from 0.171 $Wm^{-1}K^{-1}$ to 0.121 $Wm^{-1}K^{-1}$. Meanwhile, the thermal conductivity at temperatures of about $625^{\circ}C$ decreased from 0.128 $Wm^{-1}K^{-1}$ to 0.092 $Wm^{-l}K^{-1}$ as the mean SiC particle size decreased from $31{\mu}m$ to $10{\mu}m$.

Development and Characterization of Translucent Opal Glass for Diffuser of LED Lighting (LED 조명용 반투명 유백유리 Diffuser 조성 개발 및 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.650-657
    • /
    • 2012
  • For the purpose of improving the durability problem, translucent opal glass was fabricated as a substitute for the polycarbonate diffuser of LED lighting. Calcium phosphate was used as an opacifier of opal glass and melted in an electric furnace. The opaque effect was identified according to the change of the cooling procedure. As results, translucent opal glass was obtained by the melting of a batch with a composition of 3.8% calcium phosphate at $1550^{\circ}C$ for 2 hrs and then the cooling of the material in the furnace. For the cooling condition of the glass sample, HTCG (High Temperature Cooled Glass) was found to have better optical properties than LTAG (Low Temperature Annealed Glass). It had excellent optical properties for a diffuser of LED lighting, with no dazzling from direct light due to its high haze value of over 99% and low parallel transmittance value of under 1%. For the thermal properties, it had an expressed thermal expansion coefficient of $5.7{\times}10^{-6}/^{\circ}C$ and a softening point of $876^{\circ}C$; it also had good thermal properties such as good thermal shock resistance and was easy to apply to the general manufacturing process in the forming of glass tubes and bulbs. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting with high heat resistance and high durability; this material is suitable as a substitute for polycarbonate diffusers.

Effects of SiC Particle Size and Inorganic Binder on Heat Insulation of Fumed Silica-based Heat Insulation Plates

  • Jo, Hye Youn;Oh, Su Jung;Kim, Mi Na;Lim, Hyung Mi;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.386-392
    • /
    • 2016
  • Heat insulation plates of fumed silica were prepared by mixing fumed silica, SiC powder and chopped glass fiber by a high speed mixer followed by pressing of the mixture powder in a stainless steel mold of $100{\times}100mm$. Composition of the plates, particle size of SiC, and type of inorganic binder were varied for observation of their contribution to heat insulation of the plate. The plate was installed on the upper portion of an electric furnace the inside temperature of which was maintained at $400^{\circ}C$ and $600^{\circ}C$, for investigation of heat transfer through the plate from inside of the electric furnace to outside atmosphere. Surface temperatures were measured in real time using a thermographic camera. The particle size of SiC was varied in the range of $1.3{\sim}17.5{\mu}m$ and the insulation was found to be most excellent when SiC of $2.2{\mu}m$ was incorporated. When the size of SiC was smaller or larger than $2.2{\mu}m$, the heat insulation effect was decreased. Inorganic binders of alkali silicate and phosphate were tested and the phosphate was found to maintain the heat insulation property while increasing mechanical properties.

Characteristics of green colored opal glass with contents of iron oxide for LED light diffuser (LED diffuser용 green color 유백유리에 있어서 산화철 함량에 따른 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Yoo, Seol;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.120-126
    • /
    • 2014
  • Translucent green colored opal glass was fabricated to substitute polycarbonate diffuser of LED lighting in order to solve the durability problem. Batch materials of green colored opal glass with the composition of calcium phosphate for opacifier and iron oxide for colorant were made and melted at $1550^{\circ}C$. As the results, translucent green colored opal glass was obtaind, which had excellent optical properties compare with nomal color glass for the diffuser of LED lighting, with no dazzling from direct light by high haze value over 90 % and low parallel transmittance value about 1 %. Therefore, it is concluded that this translucent green colored opal glass can be used for the glass diffuser materials of LED lighting with high heat resistance and high durability to substitute polycarbonate diffuser.