• Title/Summary/Keyword: Onygenales

Search Result 4, Processing Time 0.024 seconds

Diversity of Fungi in Brackish Water in Korea (국내 기수역 환경의 균류 다양성)

  • Jeon, Yu Jeong;Goh, Jaeduk;Mun, Hye Yeon
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.457-473
    • /
    • 2020
  • We investigated the distribution and diversity of fungi in brackish water and soil from the Eulsukdo Island, Geumgang Estuary Bank, Suncheon Bay, Dae-ho Tide Embankment and coastal sand dune in Sinduri and Bu-nam Tide Embankment, Korea. Fungi were isolated from water samples by hand-pumped filtration, and soil samples were collected and diluted. The isolated fungi were incubated in potato dextrose agar at 25℃. A total of 173 fungal strains were isolated from brackish water and identified according to their respective internal transcribed spacer via phylogenetic analysis. The diversity of all fungal strains was analyzed according to diversity indices. The fungal strains belonged to any of 18 taxonomic orders: Pleosporales, Eurotiales, Capnodiales, Hypocreales, Polyporales, Saccharomycetales, Agaricales, Glomerellales, Mucorales, Dothideales, Russulales, Xylariales, Sordariales, Myrmecridiales, Tubeufiales, Onygenales, Cantharellales, and Amphisphaeriales. Cladosporium spp. (20%), Penicillium spp. (19%), and Fusarium sp. (5%) comprised majority of the identified strains. Two species from the fungal isolates were newly identified in Korea: Sarocladium kiliense NNIBRFG3280 and Fusicolla merismoides NNIBRFG23708.

First Report of Apinisia keratinophila Isolated from Soil in Korea

  • Song-Woon Nam;Leonid N. Ten;Seong-Keun Lim;Soo-Min Hong;Seung-Yeol Lee;Hee-Young Jung
    • The Korean Journal of Mycology
    • /
    • v.52 no.2
    • /
    • pp.115-123
    • /
    • 2024
  • In 2022, a fungal isolate, designated KNUF-22-049, was obtained from a soil sample collected from a field in Sang-ju, Gyeongsangbuk-do, Korea. The strain exhibited cultural and morphological characteristics, including colony color and size and the shapes and sizes of conidiogenous cells and conidia, that were consistent with those of Apinisia keratinophila. A phylogenetic analysis using the sequences of the internal transcribed spacer regions and the large subunit of the nuclear ribosomal RNA gene confirmed that isolate KNUF-22-049 is most closely related to A. keratinophila CBS 947.73T at a species level. Both the morphological observations and phylogenetic analysis indicated that KNUF-22-049 is indeed an A. keratinophila strain. This study represents the first documentation of Apinisia keratinophila in Korea.

Endophytic Fungal Diversity Associated with the Roots of Coastal Sand-dune Plants in the Sindu-ri Coastal Sand Dune, Korea (신두리 해안사구에 자생하는 사구식물 내생진균의 다양성 분석)

  • You, Young-Hyun;Seo, Yeonggyo;Yoon, Hyeokjun;Kim, Hyun;Kim, Ye-Eun;Khalmuratova, Irina;Rim, Soon-Ok;Kim, Changmu;Kim, Jong-Guk
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.300-310
    • /
    • 2013
  • The coastal sand-dune plants of eight species; Argusia sibirica, Calystegia soldanella, Elymus mollis, Lithospermum zollingeri, Raphanus sativus, Salsola collina, Zoysia macrostachya, and Zoysia sinica were collected from the Shindu-ri coastal sand dune. Ninety-eight endophytic fungal strains were isolated from the roots of these plants, analyzed, and identified by sequences in their internal transcribed spacers (ITS) at the ITS1, 5.8S, and ITS2 regions. The diversity of endophytic fungi isolated from coastal sand-dune plants was confirmed with various diversity indices. The fungal strains belonged to thirteen orders: Capnodiales (3.09%), Eurotiales (70.10%), Glomerellales (1.03%), Helotiales (3.09%), Hypocreales (9.28%), Mortierellales (2.06%), Onygenales (1.03%), Ophiostomatales (1.03%), Pleosporales (1.03%), Polyporales (1.03%), Russulales (1.03%), Saccharomycetales (2.06%), and Xylariales (1.03%). Of the endophytic fungal strains collected, Penicillium (59.18% in Eurotiales) and Fusarium (5.10% in Hypocreales) were the most abundant in coastal sand-dune plants. The endophytic fungal strains isolated from C. soldanella were more diverse compared to strains from the other coastal sand-dune plants.

Isolation, Optimization, and Partial Purification of Amylase from Chrysosporium asperatum by Submerged Fermentation

  • Sanghvi, Gaurav V.;Koyani, Rina D.;Rajput, Kishore S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.5
    • /
    • pp.470-476
    • /
    • 2011
  • A potent fungus for amylase production, Chrysosporium asperatum, was isolated from among 30 different cultures obtained from wood samples collected in the Junagadh forest, India. All of the isolated cultures were screened for their ability to produce amylase by submerged fermentation. Among the selected cultures, C. asperatum (Class Euascomycetes; Onygenales; Onygenaceae) gave maximum amylase production. In all of the different media tested, potato starch was found to be a good substrate for production of amylase enzyme at $30^{\circ}C$ and pH 5.0. Production of enzyme reached the maximum when a combination of starch and 2% xylose, and organic nitrogen (1% yeast extract) and ammonium sulfate were used as carbon and nitrogen sources, respectively. There was no significant effect of metal ions on enzyme activity. The enzyme was relatively stable at $30^{\circ}C$ for 20 min, and no inhibitory effect of $Ca^{+2}$ ions on amylase production was observed.