• Title/Summary/Keyword: Ontology-based Inference Engine

Search Result 28, Processing Time 0.022 seconds

A Study on Distributed Parallel SWRL Inference in an In-Memory-Based Cluster Environment (인메모리 기반의 클러스터 환경에서 분산 병렬 SWRL 추론에 대한 연구)

  • Lee, Wan-Gon;Bae, Seok-Hyun;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.224-233
    • /
    • 2018
  • Recently, there are many of studies on SWRL reasoning engine based on user-defined rules in a distributed environment using a large-scale ontology. Unlike the schema based axiom rules, efficient inference orders cannot be defined in SWRL rules. There is also a large volumet of network shuffled data produced by unnecessary iterative processes. To solve these problems, in this study, we propose a method that uses Map-Reduce algorithm and distributed in-memory framework to deduce multiple rules simultaneously and minimizes the volume data shuffling occurring between distributed machines in the cluster. For the experiment, we use WiseKB ontology composed of 200 million triples and 36 user-defined rules. We found that the proposed reasoner makes inferences in 16 minutes and is 2.7 times faster than previous reasoning systems that used LUBM benchmark dataset.

Distributed In-Memory based Large Scale RDFS Reasoning and Query Processing Engine for the Population of Temporal/Spatial Information of Media Ontology (미디어 온톨로지의 시공간 정보 확장을 위한 분산 인메모리 기반의 대용량 RDFS 추론 및 질의 처리 엔진)

  • Lee, Wan-Gon;Lee, Nam-Gee;Jeon, MyungJoong;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.963-973
    • /
    • 2016
  • Providing a semantic knowledge system using media ontologies requires not only conventional axiom reasoning but also knowledge extension based on various types of reasoning. In particular, spatio-temporal information can be used in a variety of artificial intelligence applications and the importance of spatio-temporal reasoning and expression is continuously increasing. In this paper, we append the LOD data related to the public address system to large-scale media ontologies in order to utilize spatial inference in reasoning. We propose an RDFS/Spatial inference system by utilizing distributed memory-based framework for reasoning about large-scale ontologies annotated with spatial information. In addition, we describe a distributed spatio-temporal SPARQL parallel query processing method designed for large scale ontology data annotated with spatio-temporal information. In order to evaluate the performance of our system, we conducted experiments using LUBM and BSBM data sets for ontology reasoning and query processing benchmark.

Ontology-based Customized Health Management Service for Metabolic Syndrome Patients (대사 증후군 환자들을 위한 온톨로지 기반 맞춤형 건강관리 서비스)

  • Lee, Byung-Mun;Lee, Young-Ho;Yu, Ki-Min;Park, Ji-Yoon;Kang, Un-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.41-52
    • /
    • 2012
  • According to 2005 Korea National Health and Nutrition Survey, it has been reported that 32.9% men and 31.8% women have Metabolic syndrome among the population of age 30 and over. The importance of prevention and management is being emphasized in Metabolic syndrome which is a complex disease related to various generic and environmental factors like other chronical disease. In this study we suggest an service based on the data using the system architecture, ontology and Jena2.0 inference engine and organizing the disease-related guideline. The study also arrives at the result through proper interpretation and reasoning process using health management service model based on ontology. The accuracy according to the situation was tested and 930 data samples were selected and experimented. We drew a conclusion that the much personalized data is available, the more personalized services are possible. Since the risk factors of Metabolic syndrome are various, it would be effective to suggest customized services based on various personalized data.

Ontology-based User Customized Search Service Considering User Intention (온톨로지 기반의 사용자 의도를 고려한 맞춤형 검색 서비스)

  • Kim, Sukyoung;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.129-143
    • /
    • 2012
  • Recently, the rapid progress of a number of standardized web technologies and the proliferation of web users in the world bring an explosive increase of producing and consuming information documents on the web. In addition, most companies have produced, shared, and managed a huge number of information documents that are needed to perform their businesses. They also have discretionally raked, stored and managed a number of web documents published on the web for their business. Along with this increase of information documents that should be managed in the companies, the need of a solution to locate information documents more accurately among a huge number of information sources have increased. In order to satisfy the need of accurate search, the market size of search engine solution market is becoming increasingly expended. The most important functionality among much functionality provided by search engine is to locate accurate information documents from a huge information sources. The major metric to evaluate the accuracy of search engine is relevance that consists of two measures, precision and recall. Precision is thought of as a measure of exactness, that is, what percentage of information considered as true answer are actually such, whereas recall is a measure of completeness, that is, what percentage of true answer are retrieved as such. These two measures can be used differently according to the applied domain. If we need to exhaustively search information such as patent documents and research papers, it is better to increase the recall. On the other hand, when the amount of information is small scale, it is better to increase precision. Most of existing web search engines typically uses a keyword search method that returns web documents including keywords which correspond to search words entered by a user. This method has a virtue of locating all web documents quickly, even though many search words are inputted. However, this method has a fundamental imitation of not considering search intention of a user, thereby retrieving irrelevant results as well as relevant ones. Thus, it takes additional time and effort to set relevant ones out from all results returned by a search engine. That is, keyword search method can increase recall, while it is difficult to locate web documents which a user actually want to find because it does not provide a means of understanding the intention of a user and reflecting it to a progress of searching information. Thus, this research suggests a new method of combining ontology-based search solution with core search functionalities provided by existing search engine solutions. The method enables a search engine to provide optimal search results by inferenceing the search intention of a user. To that end, we build an ontology which contains concepts and relationships among them in a specific domain. The ontology is used to inference synonyms of a set of search keywords inputted by a user, thereby making the search intention of the user reflected into the progress of searching information more actively compared to existing search engines. Based on the proposed method we implement a prototype search system and test the system in the patent domain where we experiment on searching relevant documents associated with a patent. The experiment shows that our system increases the both recall and precision in accuracy and augments the search productivity by using improved user interface that enables a user to interact with our search system effectively. In the future research, we will study a means of validating the better performance of our prototype system by comparing other search engine solution and will extend the applied domain into other domains for searching information such as portal.

Ontology-based Course Mentoring System (온톨로지 기반의 수강지도 시스템)

  • Oh, Kyeong-Jin;Yoon, Ui-Nyoung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.149-162
    • /
    • 2014
  • Course guidance is a mentoring process which is performed before students register for coming classes. The course guidance plays a very important role to students in checking degree audits of students and mentoring classes which will be taken in coming semester. Also, it is intimately involved with a graduation assessment or a completion of ABEEK certification. Currently, course guidance is manually performed by some advisers at most of universities in Korea because they have no electronic systems for the course guidance. By the lack of the systems, the advisers should analyze each degree audit of students and curriculum information of their own departments. This process often causes the human error during the course guidance process due to the complexity of the process. The electronic system thus is essential to avoid the human error for the course guidance. If the relation data model-based system is applied to the mentoring process, then the problems in manual way can be solved. However, the relational data model-based systems have some limitations. Curriculums of a department and certification systems can be changed depending on a new policy of a university or surrounding environments. If the curriculums and the systems are changed, a scheme of the existing system should be changed in accordance with the variations. It is also not sufficient to provide semantic search due to the difficulty of extracting semantic relationships between subjects. In this paper, we model a course mentoring ontology based on the analysis of a curriculum of computer science department, a structure of degree audit, and ABEEK certification. Ontology-based course guidance system is also proposed to overcome the limitation of the existing methods and to provide the effectiveness of course mentoring process for both of advisors and students. In the proposed system, all data of the system consists of ontology instances. To create ontology instances, ontology population module is developed by using JENA framework which is for building semantic web and linked data applications. In the ontology population module, the mapping rules to connect parts of degree audit to certain parts of course mentoring ontology are designed. All ontology instances are generated based on degree audits of students who participate in course mentoring test. The generated instances are saved to JENA TDB as a triple repository after an inference process using JENA inference engine. A user interface for course guidance is implemented by using Java and JENA framework. Once a advisor or a student input student's information such as student name and student number at an information request form in user interface, the proposed system provides mentoring results based on a degree audit of current student and rules to check scores for each part of a curriculum such as special cultural subject, major subject, and MSC subject containing math and basic science. Recall and precision are used to evaluate the performance of the proposed system. The recall is used to check that the proposed system retrieves all relevant subjects. The precision is used to check whether the retrieved subjects are relevant to the mentoring results. An officer of computer science department attends the verification on the results derived from the proposed system. Experimental results using real data of the participating students show that the proposed course guidance system based on course mentoring ontology provides correct course mentoring results to students at all times. Advisors can also reduce their time cost to analyze a degree audit of corresponding student and to calculate each score for the each part. As a result, the proposed system based on ontology techniques solves the difficulty of mentoring methods in manual way and the proposed system derive correct mentoring results as human conduct.

Index Ontology Repository for Video Contents (비디오 콘텐츠를 위한 색인 온톨로지 저장소)

  • Hwang, Woo-Yeon;Yang, Jung-Jin
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1499-1507
    • /
    • 2009
  • With the abundance of digital contents, the necessity of precise indexing technology is consistently required. To meet these requirements, the intelligent software entity needs to be the subject of information retrieval and the interoperability among intelligent entities including human must be supported. In this paper, we analyze the unifying framework for multi-modality indexing that Snoek and Worring proposed. Our work investigates the method of improving the authenticity of indexing information in contents-based automated indexing techniques. It supports the creation and control of abstracted high-level indexing information through ontological concepts of Semantic Web skills. Moreover, it attempts to present the fundamental model that allows interoperability between human and machine and between machine and machine. The memory-residence model of processing ontology is inappropriate in order to take-in an enormous amount of indexing information. The use of ontology repository and inference engine is required for consistent retrieval and reasoning of logically expressed knowledge. Our work presents an experiment for storing and retrieving the designed knowledge by using the Minerva ontology repository, which demonstrates satisfied techniques and efficient requirements. At last, the efficient indexing possibility with related research is also considered.

  • PDF

A Personalized Clothing Recommender System Based on the Algorithm for Mining Association Rules (연관 규칙 생성 알고리즘 기반의 개인화 의류 추천 시스템)

  • Lee, Chong-Hyeon;Lee, Suk-Hoon;Kim, Jang-Won;Baik, Doo-Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.59-66
    • /
    • 2010
  • We present a personalized clothing recommender system - one that mines association rules from transaction described in ontologies and infers a recommendation from the rules. The recommender system can forecast frequently changing trends of clothing using the Onto-Apriori algorithm, and it makes appropriate recommendations for each users possible through the inference marked as meta nodes. We simulates the rule generator and the inferential search engine of the system with focus on accuracy and efficiency, and our results validate the system.

Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning (대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템)

  • Jagvaral, Batselem;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1115-1123
    • /
    • 2016
  • Assumption-based truth maintenance system (ATMS) is a tool that maintains the reasoning process of inference engine. It also supports non-monotonic reasoning based on dependency-directed backtracking. Bookkeeping all the reasoning processes allows it to quickly check and retract beliefs and efficiently provide solutions for problems with large search space. However, the amount of data has been exponentially grown recently, making it impossible to use a single machine for solving large-scale problems. The maintaining process for solving such problems can lead to high computation cost due to large memory overhead. To overcome this drawback, this paper presents an approach towards incrementally maintaining the reasoning process of inference engine on cluster using Spark. It maintains data dependencies such as assumption, label, environment and justification on a cluster of machines in parallel and efficiently updates changes in a large amount of inferred datasets. We deployed the proposed ATMS on a cluster with 5 machines, conducted OWL/RDFS reasoning over University benchmark data (LUBM) and evaluated our system in terms of its performance and functionalities such as assertion, explanation and retraction. In our experiments, the proposed system performed the operations in a reasonably short period of time for over 80GB inferred LUBM2000 dataset.