• 제목/요약/키워드: Onset of Nucleate Boiling

검색결과 13건 처리시간 0.015초

만액식 증발기의 열전달 촉진관에서 저온 비등열전달의 이력현상 특성 (Hysteresis on Boiling Heat Transfer at Low Temperature on Enhanced Tubes in a Flooded Evaporator)

  • 윤현필;박종익;정진희;강용태
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.254-260
    • /
    • 2003
  • The boiling characteristics for R134a are studied to clarify the hysteresis at low temperature on enhanced tubes of a flooded evaporator. Initial boiling conditions, refrigerant temperature, and inlet temperature of the chilled water are considered as the key parameters of the experiments. Unlike previous studies of the boiling heat transfer with uniform heat flux and uniform wall temperature, the wall temperature was varied along the tube. In, this study, it was found that the hysteresis of the temperature overshoot (705) at the onset of nucleate boiling initially at the inlet section of the tube. It is also concluded that the abnormal operation can be avoided during the low temperature boiling if the refrigeration system is started with LMTD larger than $3.4^{\circ}C$ at initial stage and larger than $1.0^{\circ}C$ at normal stage.

경사각이 좁은 틈새를 가지는 환상공간 내부 풀비등 열전달에 미치는 영향 (Effect of Orientation on Pool Boiling Heat Transfer in Annulus with Small Gap)

  • 강명기
    • 대한기계학회논문집B
    • /
    • 제35권3호
    • /
    • pp.237-244
    • /
    • 2011
  • 경사각이 대기압하의 포화상태인 물의 풀비등에 미치는 영향을 조사하기 위해 실험을 통한 연구를 수행하였다. 연구를 위하여 5mm의 틈새간격을 가지는 하부유로개폐 상태인 환상공간을 고려하였다. 환상공간의 내부에 설치된 튜브를 가열하였으며 튜브의 직경과 길이는 각각 25.4mm와 500mm이다. 경사각은 수평부터 수직까지 변경하였다. 본 실험의 결과를 틈새간격이 더 큰 환상공간 및 단일튜브에 대한 결과와 서로 비교하였다. 작은 틈새간격을 가지는 환상공간의 경우 경사각이 열전달에 미치는 영향은 그다지 크지 않음을 확인하였다. 그러나 환상공간이 수평상태인 경우 80kW/$m^2$에서 임계열유속이 관찰되었다. 액체 교란의 정도와 기포군집형성이 환상공간 내부 풀비등의 주된 열전달 기구로 이해된다.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.