• Title/Summary/Keyword: Online programming

Search Result 136, Processing Time 0.021 seconds

A Study on the Revitalization of Tourism Industry through Big Data Analysis (한국관광 실태조사 빅 데이터 분석을 통한 관광산업 활성화 방안 연구)

  • Lee, Jungmi;Liu, Meina;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.149-169
    • /
    • 2018
  • Korea is currently accumulating a large amount of data in public institutions based on the public data open policy and the "Government 3.0". Especially, a lot of data is accumulated in the tourism field. However, the academic discussions utilizing the tourism data are still limited. Moreover, the openness of the data of restaurants, hotels, and online tourism information, and how to use SNS Big Data in tourism are still limited. Therefore, utilization through tourism big data analysis is still low. In this paper, we tried to analyze influencing factors on foreign tourists' satisfaction in Korea through numerical data using data mining technique and R programming technique. In this study, we tried to find ways to revitalize the tourism industry by analyzing about 36,000 big data of the "Survey on the actual situation of foreign tourists from 2013 to 2015" surveyed by the Korea Culture & Tourism Research Institute. To do this, we analyzed the factors that have high influence on the 'Satisfaction', 'Revisit intention', and 'Recommendation' variables of foreign tourists. Furthermore, we analyzed the practical influences of the variables that are mentioned above. As a procedure of this study, we first integrated survey data of foreign tourists conducted by Korea Culture & Tourism Research Institute, which is stored in the tourist information system from 2013 to 2015, and eliminate unnecessary variables that are inconsistent with the research purpose among the integrated data. Some variables were modified to improve the accuracy of the analysis. And we analyzed the factors affecting the dependent variables by using data-mining methods: decision tree(C5.0, CART, CHAID, QUEST), artificial neural network, and logistic regression analysis of SPSS IBM Modeler 16.0. The seven variables that have the greatest effect on each dependent variable were derived. As a result of data analysis, it was found that seven major variables influencing 'overall satisfaction' were sightseeing spot attraction, food satisfaction, accommodation satisfaction, traffic satisfaction, guide service satisfaction, number of visiting places, and country. Variables that had a great influence appeared food satisfaction and sightseeing spot attraction. The seven variables that had the greatest influence on 'revisit intention' were the country, travel motivation, activity, food satisfaction, best activity, guide service satisfaction and sightseeing spot attraction. The most influential variables were food satisfaction and travel motivation for Korean style. Lastly, the seven variables that have the greatest influence on the 'recommendation intention' were the country, sightseeing spot attraction, number of visiting places, food satisfaction, activity, tour guide service satisfaction and cost. And then the variables that had the greatest influence were the country, sightseeing spot attraction, and food satisfaction. In addition, in order to grasp the influence of each independent variables more deeply, we used R programming to identify the influence of independent variables. As a result, it was found that the food satisfaction and sightseeing spot attraction were higher than other variables in overall satisfaction and had a greater effect than other influential variables. Revisit intention had a higher ${\beta}$ value in the travel motive as the purpose of Korean Wave than other variables. It will be necessary to have a policy that will lead to a substantial revisit of tourists by enhancing tourist attractions for the purpose of Korean Wave. Lastly, the recommendation had the same result of satisfaction as the sightseeing spot attraction and food satisfaction have higher ${\beta}$ value than other variables. From this analysis, we found that 'food satisfaction' and 'sightseeing spot attraction' variables were the common factors to influence three dependent variables that are mentioned above('Overall satisfaction', 'Revisit intention' and 'Recommendation'), and that those factors affected the satisfaction of travel in Korea significantly. The purpose of this study is to examine how to activate foreign tourists in Korea through big data analysis. It is expected to be used as basic data for analyzing tourism data and establishing effective tourism policy. It is expected to be used as a material to establish an activation plan that can contribute to tourism development in Korea in the future.

Tracing the Development and Spread Patterns of OSS using the Method of Netnography - The Case of JavaScript Frameworks - (네트노그라피를 이용한 공개 소프트웨어의 개발 및 확산 패턴 분석에 관한 연구 - 자바스크립트 프레임워크 사례를 중심으로 -)

  • Kang, Heesuk;Yoon, Inhwan;Lee, Heesan
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.131-150
    • /
    • 2017
  • The purpose of this study is to observe the spread pattern of open source software (OSS) while establishing relations with surrounding actors during its operation period. In order to investigate the change pattern of participants in the OSS, we use a netnography on the basis of online data, which can trace the change patterns of the OSS depending on the passage of time. For this, the cases of three OSSs (e.g. jQuery, MooTools, and YUI), which are JavaScript frameworks, were compared, and the corresponding data were collected from the open application programming interface (API) of GitHub as well as blog and web searches. This research utilizes the translation process of the actor-network theory to categorize the stages of the change patterns on the OSS translation process. In the project commencement stage, we identified the type of three different OSS-related actors and defined associated relationships among them. The period, when a master commences a project at first, is refined through the course for the maintenance of source codes with persons concerned (i.e. project growth stage). Thereafter, the period when the users have gone through the observation and learning period by being exposed to promotion activities and codes usage respectively, and becoming to active participants, is regarded as the 'leap of participants' stage. Our results emphasize the importance of promotion processes in participants' selection of the OSS for participation and confirm the crowding-out effect that the rapid speed of OSS development retarded the emergence of participants.

  • PDF

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.

Relationships between Collective Intelligence Quality, Its Determinants, and Usefulness: A Comparative Study between Wiki Service and Q&A Service in Perspective of Korean Users (집단지성의 품질, 그 결정요인, 유용성의 관계: 수용자 관점에서 한국의 위키서비스와 Q&A 서비스의 비교)

  • Joo, Jaehun;Normatov, Ismatilla R.
    • Asia pacific journal of information systems
    • /
    • v.22 no.4
    • /
    • pp.75-99
    • /
    • 2012
  • Innovation can come from inside or outside organizations. Recently, organizations have begun turning to external knowledge more often, through various forms of collective intelligence (CI) as collaborative platform to solve complex problems. Several factors facilitate this CI utilization phenomenon. First, with the rapid development of Internet and social media, numerous web applications have become available to millions of the Internet users over the past few decades. Web 2.0 and social media have become innovative web applications that provide an environment for human social interaction and collaboration. Second, the diffusion of simple and easy-to-use technologies that enable users to interact and design web applications without programming skills have led to vast, previously unknown amounts of user-generated content. Finally, the Internet has enabled communities to connect and collaborate, creating a virtual world of CI. In this study, web enabled CI is defined as a composed ability of individuals who are acting as a single cognitive unit to achieve common goals, think reasonably, solve problems, make decisions, carry out complex tasks, and develop creative ideas collectively through participation and collaboration on the web. Although CI plays a critical role in organizational innovation and collaboration, the dubious quality of CI is still problem that is difficult to solve. In general, the quality level of content collected from the crowd is lower than that from professionals. Thus, it is important to identify determinants of CI quality and to analyze the relationship between CI quality and its usefulness. However, there is a lack of empirical study on the quality factors of web-enabled CI. There exist a variety of web enabled CI sites such as Threadless, iStockphoto or InnoCentive, Wikipedia, and Youtube. One of the most successful forms of web-enabled CI is the Wikipedia online encyclopedia, accessible all over the world. Another one example is Naver KnowledgeiN, a typical and popular CI site offering question and answer (Q&A) services. It is necessary to study whether or not different types of CI have a different effect on CI quality and its usefulness. Thus, the purpose of this paper is to answer to following research questions: ${\bullet}$ What determinants are important to CI quality? ${\bullet}$ What is the relationship between CI quality factors and the usefulness of web-enabled CI? ${\bullet}$ Does CI type have a moderating effect on the relationship between CI quality, its determinants, and CI usefulness? Online survey using Google Docs with email and Kakao Talk was conducted for collecting data from Wikipedia and Naver KnowledgeiN users. A totoal of 490 valid responses were collected, where users of Wikipedia were 220 while users of Naver KnowledgeiN were 270. Expertise of contributors, community size, and diversity of contributors were identified as core determinants of perceived CI quality. Perceived CI quality has significantly influenced perceived CI usefulness from a user's perspective. For improving CI quality, it is believed that organizations should ensure proper crowd size, facilitate CI contributors' diversity and attract as many expert contributors as possible. Hypotheses that CI type plays a role of moderator were partially supported. First, the relationship between expertise of contributors and perceived CI quality was different according to CI type. The expertise of contributors played a more important role in CI quality in the case of Q&A services such as Knowledge iN compared to wiki services such as Wikipedia. This implies that Q&A service requires more expertise and experiences in particular areas rather than the case of Wiki service to improve service quality. Second, the relationship between community size and perceived CI quality was different according to CI type. The community size has a greater effect on CI quality in case of Wiki service than that of Q&A service. The number of contributors in Wikipeda is important because Wiki is an encyclopedia service which is edited and revised repeatedly from many contributors while the answer given in Naver Knowledge iN can not be corrected by others. Finally, CI quality has a greater effect on its usefulness in case of Wiki service rather than Q&A service. In this paper, we suggested implications for practitioners and theorists. Organizations offering services based on collective intelligence try to improve expertise of contributeros, to increase the number of contributors, and to facilitate participation of various contributors.

  • PDF

A Study on the Development Trend of Artificial Intelligence Using Text Mining Technique: Focused on Open Source Software Projects on Github (텍스트 마이닝 기법을 활용한 인공지능 기술개발 동향 분석 연구: 깃허브 상의 오픈 소스 소프트웨어 프로젝트를 대상으로)

  • Chong, JiSeon;Kim, Dongsung;Lee, Hong Joo;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • Artificial intelligence (AI) is one of the main driving forces leading the Fourth Industrial Revolution. The technologies associated with AI have already shown superior abilities that are equal to or better than people in many fields including image and speech recognition. Particularly, many efforts have been actively given to identify the current technology trends and analyze development directions of it, because AI technologies can be utilized in a wide range of fields including medical, financial, manufacturing, service, and education fields. Major platforms that can develop complex AI algorithms for learning, reasoning, and recognition have been open to the public as open source projects. As a result, technologies and services that utilize them have increased rapidly. It has been confirmed as one of the major reasons for the fast development of AI technologies. Additionally, the spread of the technology is greatly in debt to open source software, developed by major global companies, supporting natural language recognition, speech recognition, and image recognition. Therefore, this study aimed to identify the practical trend of AI technology development by analyzing OSS projects associated with AI, which have been developed by the online collaboration of many parties. This study searched and collected a list of major projects related to AI, which were generated from 2000 to July 2018 on Github. This study confirmed the development trends of major technologies in detail by applying text mining technique targeting topic information, which indicates the characteristics of the collected projects and technical fields. The results of the analysis showed that the number of software development projects by year was less than 100 projects per year until 2013. However, it increased to 229 projects in 2014 and 597 projects in 2015. Particularly, the number of open source projects related to AI increased rapidly in 2016 (2,559 OSS projects). It was confirmed that the number of projects initiated in 2017 was 14,213, which is almost four-folds of the number of total projects generated from 2009 to 2016 (3,555 projects). The number of projects initiated from Jan to Jul 2018 was 8,737. The development trend of AI-related technologies was evaluated by dividing the study period into three phases. The appearance frequency of topics indicate the technology trends of AI-related OSS projects. The results showed that the natural language processing technology has continued to be at the top in all years. It implied that OSS had been developed continuously. Until 2015, Python, C ++, and Java, programming languages, were listed as the top ten frequently appeared topics. However, after 2016, programming languages other than Python disappeared from the top ten topics. Instead of them, platforms supporting the development of AI algorithms, such as TensorFlow and Keras, are showing high appearance frequency. Additionally, reinforcement learning algorithms and convolutional neural networks, which have been used in various fields, were frequently appeared topics. The results of topic network analysis showed that the most important topics of degree centrality were similar to those of appearance frequency. The main difference was that visualization and medical imaging topics were found at the top of the list, although they were not in the top of the list from 2009 to 2012. The results indicated that OSS was developed in the medical field in order to utilize the AI technology. Moreover, although the computer vision was in the top 10 of the appearance frequency list from 2013 to 2015, they were not in the top 10 of the degree centrality. The topics at the top of the degree centrality list were similar to those at the top of the appearance frequency list. It was found that the ranks of the composite neural network and reinforcement learning were changed slightly. The trend of technology development was examined using the appearance frequency of topics and degree centrality. The results showed that machine learning revealed the highest frequency and the highest degree centrality in all years. Moreover, it is noteworthy that, although the deep learning topic showed a low frequency and a low degree centrality between 2009 and 2012, their ranks abruptly increased between 2013 and 2015. It was confirmed that in recent years both technologies had high appearance frequency and degree centrality. TensorFlow first appeared during the phase of 2013-2015, and the appearance frequency and degree centrality of it soared between 2016 and 2018 to be at the top of the lists after deep learning, python. Computer vision and reinforcement learning did not show an abrupt increase or decrease, and they had relatively low appearance frequency and degree centrality compared with the above-mentioned topics. Based on these analysis results, it is possible to identify the fields in which AI technologies are actively developed. The results of this study can be used as a baseline dataset for more empirical analysis on future technology trends that can be converged.

Exploring Pre-Service Earth Science Teachers' Understandings of Computational Thinking (지구과학 예비교사들의 컴퓨팅 사고에 대한 인식 탐색)

  • Young Shin Park;Ki Rak Park
    • Journal of the Korean earth science society
    • /
    • v.45 no.3
    • /
    • pp.260-276
    • /
    • 2024
  • The purpose of this study is to explore whether pre-service teachers majoring in earth science improve their perception of computational thinking through STEAM classes focused on engineering-based wave power plants. The STEAM class involved designing the most efficient wave power plant model. The survey on computational thinking practices, developed from previous research, was administered to 15 Earth science pre-service teachers to gauge their understanding of computational thinking. Each group developed an efficient wave power plant model based on the scientific principal of turbine operation using waves. The activities included problem recognition (problem solving), coding (coding and programming), creating a wave power plant model using a 3D printer (design and create model), and evaluating the output to correct errors (debugging). The pre-service teachers showed a high level of recognition of computational thinking practices, particularly in "logical thinking," with the top five practices out of 14 averaging five points each. However, participants lacked a clear understanding of certain computational thinking practices such as abstraction, problem decomposition, and using bid data, with their comprehension of these decreasing after the STEAM lesson. Although there was a significant reduction in the misconception that computational thinking is "playing online games" (from 4.06 to 0.86), some participants still equated it with "thinking like a computer" and "using a computer to do calculations". The study found slight improvements in "problem solving" (3.73 to 4.33), "pattern recognition" (3.53 to 3.66), and "best tool selection" (4.26 to 4.66). To enhance computational thinking skills, a practice-oriented curriculum should be offered. Additional STEAM classes on diverse topics could lead to a significant improvement in computational thinking practices. Therefore, establishing an educational curriculum for multisituational learning is essential.