• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.026 seconds

Classification of ratings in online reviews (온라인 리뷰에서 평점의 분류)

  • Choi, Dongjun;Choi, Hosik;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.845-854
    • /
    • 2016
  • Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.

Text Mining of Online News, Social Media, and Consumer Review on Artificial Intelligence Service (인공지능 서비스에 대한 온라인뉴스, 소셜미디어, 소비자리뷰 텍스트마이닝)

  • Li, Xu;Lim, Hyewon;Yeo, Harim;Hwang, Hyesun
    • Human Ecology Research
    • /
    • v.59 no.1
    • /
    • pp.23-43
    • /
    • 2021
  • This study looked through the text mining analysis to check the status of the virtual assistant service, and explore the needs of consumers, and present consumer-oriented directions. Trendup 4.0 was used to analyze the keywords of AI services in Online News and social media from 2016 to 2020. The R program was used to collect consumer comment data and implement Topic Modeling analysis. According to the analysis, the number of mentions of AI services in mass media and social media has steadily increased. The Sentimental Analysis showed consumers were feeling positive about AI services in terms of useful and convenient functional and emotional aspects such as pleasure and interest. However, consumers were also experiencing complexity and difficulty with AI services and had concerns and fears about the use of AI services in the early stages of their introduction. The results of the consumer review analysis showed that there were topics(Technical Requirements) related to technology and the access process for the AI services to be provided, and topics (Consumer Request) expressed negative feelings about AI services, and topics(Consumer Life Support Area) about specific functions in the use of AI services. Text mining analysis enable this study to confirm consumer expectations or concerns about AI service, and to examine areas of service support that consumers experienced. The review data on each platform also revealed that the potential needs of consumers could be met by expanding the scope of support services and applying platform-specific strengths to provide differentiated services.

Development of Online Fashion Thesaurus and Taxonomy for Text Mining (텍스트마이닝을 위한 패션 속성 분류체계 및 말뭉치 웹사전 구축)

  • Seyoon Jang;Ha Youn Kim;Songmee Kim;Woojin Choi;Jin Jeong;Yuri Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1142-1160
    • /
    • 2022
  • Text data plays a significant role in understanding and analyzing trends in consumer, business, and social sectors. For text analysis, there must be a corpus that reflects specific domain knowledge. However, in the field of fashion, the professional corpus is insufficient. This study aims to develop a taxonomy and thesaurus that considers the specialty of fashion products. To this end, about 100,000 fashion vocabulary terms were collected by crawling text data from WSGN, Pantone, and online platforms; text subsequently was extracted through preprocessing with Python. The taxonomy was composed of items, silhouettes, details, styles, colors, textiles, and patterns/prints, which are seven attributes of clothes. The corpus was completed through processing synonyms of terms from fashion books such as dictionaries. Finally, 10,294 vocabulary words, including 1,956 standard Korean words, were classified in the taxonomy. All data was then developed into a web dictionary system. Quantitative and qualitative performance tests of the results were conducted through expert reviews. The performance of the thesaurus also was verified by comparing the results of text mining analysis through the previously developed corpus. This study contributes to achieving a text data standard and enables meaningful results of text mining analysis in the fashion field.

Multi-Label Classification Approach to Effective Aspect-Mining (효과적인 애스팩트 마이닝을 위한 다중 레이블 분류접근법)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.22 no.3
    • /
    • pp.81-97
    • /
    • 2020
  • Recent trends in sentiment analysis have been focused on applying single label classification approaches. However, when considering the fact that a review comment by one person is usually composed of several topics or aspects, it would be better to classify sentiments for those aspects respectively. This paper has two purposes. First, based on the fact that there are various aspects in one sentence, aspect mining is performed to classify the emotions by each aspect. Second, we apply the multiple label classification method to analyze two or more dependent variables (output values) at once. To prove our proposed approach's validity, online review comments about musical performances were garnered from domestic online platform, and the multi-label classification approach was applied to the dataset. Results were promising, and potentials of our proposed approach were discussed.

Enhancement of User Understanding and Service Value Using Online Reviews (온라인 리뷰를 활용한 사용자 이해 및 서비스 가치 증대)

  • Kim, Jin-Hwa;Byeon, Hyeon-Su;Lee, Seung-Hun
    • The Journal of Information Systems
    • /
    • v.20 no.2
    • /
    • pp.21-36
    • /
    • 2011
  • The Web has become an excellent source for gathering consumer opinions. There are now numerous Web sites containing such opinions, e.g., customer reviews of products, forums, discussion groups, and blogs. This paper focuses on online customer reviews of products. It makes some contributions. Especially it proposes minimalism and chunking framework for analyzing and comparing consumer opinions of competing products. Users are able to clearly see the strengths and weaknesses of each product in the minds of consumers in terms of various product features. This comparison is useful to both potential customers and product manufacturers. For a product manufacturer, the comparison enables it to easily gather marketing intelligence and product benchmarking information. In this paper, we only focus on mining opinion/product features that the reviewers have commented on. Five types of online review presentations are presented to mine such features. Our experimental results show that these techniques are useful to identify customers' opinions and trends.

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

Research on Methods for Processing Nonstandard Korean Words on Social Network Services (소셜네트워크서비스에 활용할 비표준어 한글 처리 방법 연구)

  • Lee, Jong-Hwa;Le, Hoanh Su;Lee, Hyun-Kyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.3
    • /
    • pp.35-46
    • /
    • 2016
  • Social network services (SNS) that help to build relationship network and share a particular interest or activity freely according to their interests by posting comments, photos, videos,${\ldots}$ on online communities such as blogs have adopted and developed widely as a social phenomenon. Several researches have been done to explore the pattern and valuable information in social networks data via text mining such as opinion mining and semantic analysis. For improving the efficiency of text mining, keyword-based approach have been applied but most of researchers argued the limitations of the rules of Korean orthography. This research aims to construct a database of non-standard Korean words which are difficulty in data mining such abbreviations, slangs, strange expressions, emoticons in order to improve the limitations in keyword-based text mining techniques. Based on the study of subjective opinions about specific topics on blogs, this research extracted non-standard words that were found useful in text mining process.

Designn and Implementation Online Customer Reviews Analysis System based on Dependency Network Model (종속성 네트워크 기반의 온라인 고객리뷰 분석시스템 설계 및 구현)

  • Kim, Keun-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.11
    • /
    • pp.30-37
    • /
    • 2010
  • It is very important to analyze online customer reviews, which are small documents of writing opinions or experiences about products or services, for both customers and companies because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we did not propose only dependency network model which is tool for analyzing online customer reviews, but also designed and implemented the system based on the dependency network model. The dependency network model analyzes both subjective and objective sentences, so that it can represent relative importance and relationship between the nouns in the sentences. In the result of implementing, we recognized that relative importance and relationship between the features of products or services, which can not be mined by opinion mining, can be represented by the dependency network model.

Using Image Visualization Based Malware Detection Techniques for Customer Churn Prediction in Online Games (악성코드의 이미지 시각화 탐지 기법을 적용한 온라인 게임상에서의 이탈 유저 탐지 모델)

  • Yim, Ha-bin;Kim, Huy-kang;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1431-1439
    • /
    • 2017
  • In the security field, log analysis is important to detect malware or abnormal behavior. Recently, image visualization techniques for malware dectection becomes to a major part of security. These techniques can also be used in online games. Users can leave a game when they felt bad experience from game bot, automatic hunting programs, malicious code, etc. This churning can damage online game's profit and longevity of service if game operators cannot detect this kind of events in time. In this paper, we propose a new technique of PNG image conversion based churn prediction to improve the efficiency of data analysis for the first. By using this log compression technique, we can reduce the size of log files by 52,849 times smaller and increase the analysis speed without features analysis. Second, we apply data mining technique to predict user's churn with a real dataset from Blade & Soul developed by NCSoft. As a result, we can identify potential churners with a high accuracy of 97%.

An Intelligent Recommendation System by Integrating the Attributes of Product and Customer in the Movie Reviews (영화 리뷰의 상품 속성과 고객 속성을 통합한 지능형 추천시스템)

  • Hong, Taeho;Hong, Junwoo;Kim, Eunmi;Kim, Minsu
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.1-18
    • /
    • 2022
  • As digital technology converges into the e-commerce market across industries, online transactions have activated, and the use of online has increased. With the recent spread of infectious diseases such as COVID-19, this market flow is accelerating, and various product information can be provided to customers online. Providing a variety of information provides customers with various opportunities but causes difficulties in decision-making. The recommendation system can help customers to make a decision more effectively. However, the previous research on recommendation systems is limited to only quantitative data and does not reflect detailed factors of products and customers. In this study, we propose an intelligent recommendation system that quantifies the attributes of products and customers by applying text mining techniques to qualitative data based on online reviews and integrates the existing objective indicators of total star rating, sentiment, and emotion. The proposed integrated recommendation model showed superior performance to the overall rating-oriented recommendation model. It expects the new business value to be created through the recommendation result reflecting detailed factors of products and customers.