Journal of the Korean Data and Information Science Society
/
v.27
no.4
/
pp.845-854
/
2016
Sentiment analysis or opinion mining is a technique of text mining employed to identify subjective information or opinions of an individual from documents in blogs, reviews, articles, or social networks. In the literature, only a problem of binary classification of ratings based on review texts in an online review. However, because there can be positive or negative reviews as well as neutral reviews, a multi-class classification will be more appropriate than the binary classification. To this end, we consider the multi-class classification of ratings based on review texts. In the preprocessing stage, we extract words related with ratings using chi-square statistic. Then the extracted words are used as input variables to multi-class classifiers such as support vector machines and proportional odds model to compare their predictive performances.
This study looked through the text mining analysis to check the status of the virtual assistant service, and explore the needs of consumers, and present consumer-oriented directions. Trendup 4.0 was used to analyze the keywords of AI services in Online News and social media from 2016 to 2020. The R program was used to collect consumer comment data and implement Topic Modeling analysis. According to the analysis, the number of mentions of AI services in mass media and social media has steadily increased. The Sentimental Analysis showed consumers were feeling positive about AI services in terms of useful and convenient functional and emotional aspects such as pleasure and interest. However, consumers were also experiencing complexity and difficulty with AI services and had concerns and fears about the use of AI services in the early stages of their introduction. The results of the consumer review analysis showed that there were topics(Technical Requirements) related to technology and the access process for the AI services to be provided, and topics (Consumer Request) expressed negative feelings about AI services, and topics(Consumer Life Support Area) about specific functions in the use of AI services. Text mining analysis enable this study to confirm consumer expectations or concerns about AI service, and to examine areas of service support that consumers experienced. The review data on each platform also revealed that the potential needs of consumers could be met by expanding the scope of support services and applying platform-specific strengths to provide differentiated services.
Seyoon Jang;Ha Youn Kim;Songmee Kim;Woojin Choi;Jin Jeong;Yuri Lee
Journal of the Korean Society of Clothing and Textiles
/
v.46
no.6
/
pp.1142-1160
/
2022
Text data plays a significant role in understanding and analyzing trends in consumer, business, and social sectors. For text analysis, there must be a corpus that reflects specific domain knowledge. However, in the field of fashion, the professional corpus is insufficient. This study aims to develop a taxonomy and thesaurus that considers the specialty of fashion products. To this end, about 100,000 fashion vocabulary terms were collected by crawling text data from WSGN, Pantone, and online platforms; text subsequently was extracted through preprocessing with Python. The taxonomy was composed of items, silhouettes, details, styles, colors, textiles, and patterns/prints, which are seven attributes of clothes. The corpus was completed through processing synonyms of terms from fashion books such as dictionaries. Finally, 10,294 vocabulary words, including 1,956 standard Korean words, were classified in the taxonomy. All data was then developed into a web dictionary system. Quantitative and qualitative performance tests of the results were conducted through expert reviews. The performance of the thesaurus also was verified by comparing the results of text mining analysis through the previously developed corpus. This study contributes to achieving a text data standard and enables meaningful results of text mining analysis in the fashion field.
Recent trends in sentiment analysis have been focused on applying single label classification approaches. However, when considering the fact that a review comment by one person is usually composed of several topics or aspects, it would be better to classify sentiments for those aspects respectively. This paper has two purposes. First, based on the fact that there are various aspects in one sentence, aspect mining is performed to classify the emotions by each aspect. Second, we apply the multiple label classification method to analyze two or more dependent variables (output values) at once. To prove our proposed approach's validity, online review comments about musical performances were garnered from domestic online platform, and the multi-label classification approach was applied to the dataset. Results were promising, and potentials of our proposed approach were discussed.
The Web has become an excellent source for gathering consumer opinions. There are now numerous Web sites containing such opinions, e.g., customer reviews of products, forums, discussion groups, and blogs. This paper focuses on online customer reviews of products. It makes some contributions. Especially it proposes minimalism and chunking framework for analyzing and comparing consumer opinions of competing products. Users are able to clearly see the strengths and weaknesses of each product in the minds of consumers in terms of various product features. This comparison is useful to both potential customers and product manufacturers. For a product manufacturer, the comparison enables it to easily gather marketing intelligence and product benchmarking information. In this paper, we only focus on mining opinion/product features that the reviewers have commented on. Five types of online review presentations are presented to mine such features. Our experimental results show that these techniques are useful to identify customers' opinions and trends.
Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.
Journal of Korea Society of Industrial Information Systems
/
v.21
no.3
/
pp.35-46
/
2016
Social network services (SNS) that help to build relationship network and share a particular interest or activity freely according to their interests by posting comments, photos, videos,${\ldots}$ on online communities such as blogs have adopted and developed widely as a social phenomenon. Several researches have been done to explore the pattern and valuable information in social networks data via text mining such as opinion mining and semantic analysis. For improving the efficiency of text mining, keyword-based approach have been applied but most of researchers argued the limitations of the rules of Korean orthography. This research aims to construct a database of non-standard Korean words which are difficulty in data mining such abbreviations, slangs, strange expressions, emoticons in order to improve the limitations in keyword-based text mining techniques. Based on the study of subjective opinions about specific topics on blogs, this research extracted non-standard words that were found useful in text mining process.
It is very important to analyze online customer reviews, which are small documents of writing opinions or experiences about products or services, for both customers and companies because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we did not propose only dependency network model which is tool for analyzing online customer reviews, but also designed and implemented the system based on the dependency network model. The dependency network model analyzes both subjective and objective sentences, so that it can represent relative importance and relationship between the nouns in the sentences. In the result of implementing, we recognized that relative importance and relationship between the features of products or services, which can not be mined by opinion mining, can be represented by the dependency network model.
Journal of the Korea Institute of Information Security & Cryptology
/
v.27
no.6
/
pp.1431-1439
/
2017
In the security field, log analysis is important to detect malware or abnormal behavior. Recently, image visualization techniques for malware dectection becomes to a major part of security. These techniques can also be used in online games. Users can leave a game when they felt bad experience from game bot, automatic hunting programs, malicious code, etc. This churning can damage online game's profit and longevity of service if game operators cannot detect this kind of events in time. In this paper, we propose a new technique of PNG image conversion based churn prediction to improve the efficiency of data analysis for the first. By using this log compression technique, we can reduce the size of log files by 52,849 times smaller and increase the analysis speed without features analysis. Second, we apply data mining technique to predict user's churn with a real dataset from Blade & Soul developed by NCSoft. As a result, we can identify potential churners with a high accuracy of 97%.
As digital technology converges into the e-commerce market across industries, online transactions have activated, and the use of online has increased. With the recent spread of infectious diseases such as COVID-19, this market flow is accelerating, and various product information can be provided to customers online. Providing a variety of information provides customers with various opportunities but causes difficulties in decision-making. The recommendation system can help customers to make a decision more effectively. However, the previous research on recommendation systems is limited to only quantitative data and does not reflect detailed factors of products and customers. In this study, we propose an intelligent recommendation system that quantifies the attributes of products and customers by applying text mining techniques to qualitative data based on online reviews and integrates the existing objective indicators of total star rating, sentiment, and emotion. The proposed integrated recommendation model showed superior performance to the overall rating-oriented recommendation model. It expects the new business value to be created through the recommendation result reflecting detailed factors of products and customers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.