• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.024 seconds

Exploring Subcultural Capital in Sneakerhead Culture -A Netnographic Investigation- (스니커헤드 하위문화에 대한 네트노그라피 분석 -하위문화자본 개념을 중심으로-)

  • Solhwi Kim;Eunhyuk Yim
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.5
    • /
    • pp.943-958
    • /
    • 2023
  • This study explores the sneakerhead subculture through the lens of subcultural capital, primarily focusing on online community interactions. The analysis utilizes text mining techniques and netnographic research methods to examine textual data extracted from the online sneakerhead community and aims to elucidate manifestations of subcultural capital within the subculture. The findings underscore several key points: Firstly, shared experiences cultivated by the collective consciousness of subcultural capital foster solidarity among members. Secondly, ongoing validation of authenticity and comprehension of sneakers' cultural significance are member requirements. Subsequently, exhibiting greater levels of subcultural capital empowers members, resulting in hierarchical structures both within and beyond the community. Fourthly, resale-driven sneaker commercialization yields positive outcomes, including individual profit and cultural expansion, yet also brings negative consequences, such as market distortion and intra-community conflict. Lastly, the online community fills a pivotal role in dictating subcultural trends, effectively functioning as an institutional network. Given sneakers' enduring status as a fashion phenomenon, further examination of in this realm is warranted.

Lexical and Phrasal Analysis of Online Discourse of Type 2 Diabetes Patients based on Text-Mining (텍스트마이닝 기법을 이용한 제 2형 당뇨환자 온라인 담론의 어휘 및 구문구조 분석)

  • Hwang, Moonl-Hyon;Park, Jungsik
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.655-667
    • /
    • 2014
  • This paper has identified five major categories of the T2D patients' concerns based on an online forum where the patients voluntarily verbalized their naturally occurring emotional reactions and concerns related to T2D. We have emphasized the fact that the lexical and phrasal analysis brought to the forefront the prevailing negative reactions and desires for clear information, professional advice, and emotional support. This study used lexical and phrasal analysis based on text-mining tools to estimate the potential of using a large sample of patient conversation of a specific disease posted on the internet for clinical features and patients' emotions. As a result, the study showed that quantitative analysis based on text-mining is a viable method of generalizing the psychological concerns and features of T2D patients.

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

An Exploratory Analysis of Online Discussion of Library and Information Science Professionals in India using Text Mining

  • Garg, Mohit;Kanjilal, Uma
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.3
    • /
    • pp.40-56
    • /
    • 2022
  • This paper aims to implement a topic modeling technique for extracting the topics of online discussions among library professionals in India. Topic modeling is the established text mining technique popularly used for modeling text data from Twitter, Facebook, Yelp, and other social media platforms. The present study modeled the online discussions of Library and Information Science (LIS) professionals posted on Lis Links. The text data of these posts was extracted using a program written in R using the package "rvest." The data was pre-processed to remove blank posts, posts having text in non-English fonts, punctuation, URLs, emails, etc. Topic modeling with the Latent Dirichlet Allocation algorithm was applied to the pre-processed corpus to identify each topic associated with the posts. The frequency analysis of the occurrence of words in the text corpus was calculated. The results found that the most frequent words included: library, information, university, librarian, book, professional, science, research, paper, question, answer, and management. This shows that the LIS professionals actively discussed exams, research, and library operations on the forum of Lis Links. The study categorized the online discussions on Lis Links into ten topics, i.e. "LIS Recruitment," "LIS Issues," "Other Discussion," "LIS Education," "LIS Research," "LIS Exams," "General Information related to Library," "LIS Admission," "Library and Professional Activities," and "Information Communication Technology (ICT)." It was found that the majority of the posts belonged to "LIS Exam," followed by "Other Discussions" and "General Information related to the Library."

An Ensemble Approach for Cyber Bullying Text messages and Images

  • Zarapala Sunitha Bai;Sreelatha Malempati
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.11
    • /
    • pp.59-66
    • /
    • 2023
  • Text mining (TM) is most widely used to find patterns from various text documents. Cyber-bullying is the term that is used to abuse a person online or offline platform. Nowadays cyber-bullying becomes more dangerous to people who are using social networking sites (SNS). Cyber-bullying is of many types such as text messaging, morphed images, morphed videos, etc. It is a very difficult task to prevent this type of abuse of the person in online SNS. Finding accurate text mining patterns gives better results in detecting cyber-bullying on any platform. Cyber-bullying is developed with the online SNS to send defamatory statements or orally bully other persons or by using the online platform to abuse in front of SNS users. Deep Learning (DL) is one of the significant domains which are used to extract and learn the quality features dynamically from the low-level text inclusions. In this scenario, Convolutional neural networks (CNN) are used for training the text data, images, and videos. CNN is a very powerful approach to training on these types of data and achieved better text classification. In this paper, an Ensemble model is introduced with the integration of Term Frequency (TF)-Inverse document frequency (IDF) and Deep Neural Network (DNN) with advanced feature-extracting techniques to classify the bullying text, images, and videos. The proposed approach also focused on reducing the training time and memory usage which helps the classification improvement.

A Study on the Purchasing Factors of Color Cosmetics Using Big Data: Focusing on Topic Modeling and Concor Analysis (빅데이터를 활용한 색조화장품의 구매 요인에 관한 연구: 토픽모델링과 Concor 분석을 중심으로)

  • Eun-Hee Lee;Seung- Hee Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.724-732
    • /
    • 2023
  • In this study, we tried to analyze the characteristics of color cosmetics information search and the major information of interest in the color cosmetics market after COVID-19 shown in the text mining analysis results by collecting data on online interest information of consumers in the color cosmetics market after COVID-19. In the empirical analysis, text mining was performed on all documents such as news, blogs, cafes, and web pages, including the word "color cosmetics". As a result of the analysis, online information searches for color cosmetics after COVID-19 were mainly focused on purchase information, information on skin and mask-related makeup methods, and major topics such as interest brands and event information. As a result, post-COVID-19 color cosmetics buyers will become more sensitive to purchase information such as product value, safety, price benefits, and store information through active online information search, so a response strategy is required.

Using Ontologies for Semantic Text Mining (시맨틱 텍스트 마이닝을 위한 온톨로지 활용 방안)

  • Yu, Eun-Ji;Kim, Jung-Chul;Lee, Choon-Youl;Kim, Nam-Gyu
    • The Journal of Information Systems
    • /
    • v.21 no.3
    • /
    • pp.137-161
    • /
    • 2012
  • The increasing interest in big data analysis using various data mining techniques indicates that many commercial data mining tools now need to be equipped with fundamental text analysis modules. The most essential prerequisite for accurate analysis of text documents is an understanding of the exact semantics of each term in a document. The main difficulties in understanding the exact semantics of terms are mainly attributable to homonym and synonym problems, which is a traditional problem in the natural language processing field. Some major text mining tools provide a thesaurus to solve these problems, but a thesaurus cannot be used to resolve complex synonym problems. Furthermore, the use of a thesaurus is irrelevant to the issue of homonym problems and hence cannot solve them. In this paper, we propose a semantic text mining methodology that uses ontologies to improve the quality of text mining results by resolving the semantic ambiguity caused by homonym and synonym problems. We evaluate the practical applicability of the proposed methodology by performing a classification analysis to predict customer churn using real transactional data and Q&A articles from the "S" online shopping mall in Korea. The experiments revealed that the prediction model produced by our proposed semantic text mining method outperformed the model produced by traditional text mining in terms of prediction accuracy such as the response, captured response, and lift.

Efficient Assessment and Recommendations System using IRT and Data Mining (IRT와 데이터 마이닝을 이용한 효과적인 평가 및 추천시스템)

  • Kim Cheon-Shik;Jung Myung-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.109-117
    • /
    • 2006
  • E-learning method has many advantages that supplement the shortfalls of offline education. For this reason, today's offline educational institutions adopted the online education technique to improve learning effectiveness. Recently, general universities have partially adopted online learning. As a result, a study is searching for ways to improve the effectiveness of education by copying the merits of the existing offline education onto the online education. Thus a proper evaluation of learners and a feedback provision are considered necessary to improve the effectiveness of online learning. This study aims to suggest a model that will improve learning efficiency by adapting the advantages of offline education to online learning. To evaluate properly, this study conducted Item Response Test to examine the learners and finally ensure them an adequate level of education. Also, this study suggested a way to enhance learning efficiency by finding out each learner's study habits and to address the weaknesses of online learning. It is expected that the suggested method would be helpful in bettering learner's ability to study in school environment.

  • PDF

A Study on Consumer perception changes of online education before and after COVID-19 using text mining (텍스트 마이닝을 활용한 온라인 교육에 대한 소비자 인식 변화 분석: COVID-19 전후를 중심으로)

  • Sohn, Minsung;Im, Meeja;Park, Kyunghwan
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.29-43
    • /
    • 2021
  • Coinciding with the advent of COVID-19, online education is on the rise both domestically and globally, and has become an absolutely necessary and irreplaceable form of education. It is a very curious question what the perception of people about the suddenly growing form of education is, and how it has changed. This study investigated changes in consumers' perception of online education using big data. To this end, we divided the time into four stages: before COVID-19 (November to December 2019), after the triggering of COVID-19 (January to February 2020), right after the online classes started (March to April 2020), after experiencing some online education (May to June 2020). Then we conducted text mining, namely, keyword frequency analysis, network analysis, word cloud analysis, and sentiment analysis were performed. The implications derived as a result of the analysis can help education policy makers and educators working in the field to improve online education quality and establish its future directions.

Applications of the Text Mining Approach to Online Financial Information

  • Hansol Lee;Juyoung Kang;Sangun Park
    • Asia pacific journal of information systems
    • /
    • v.32 no.4
    • /
    • pp.770-802
    • /
    • 2022
  • With the development of deep learning techniques, text mining is producing breakthrough performance improvements, promising future applications, and practical use cases across many fields. Likewise, even though several attempts have been made in the field of financial information, few cases apply the current technological trends. Recently, companies and government agencies have attempted to conduct research and apply text mining in the field of financial information. First, in this study, we investigate various works using text mining to show what studies have been conducted in the financial sector. Second, to broaden the view of financial application, we provide a description of several text mining techniques that can be used in the field of financial information and summarize various paradigms in which these technologies can be applied. Third, we also provide practical cases for applying the latest text mining techniques in the field of financial information to provide more tangible guidance for those who will use text mining techniques in finance. Lastly, we propose potential future research topics in the field of financial information and present the research methods and utilization plans. This study can motivate researchers studying financial issues to use text mining techniques to gain new insights and improve their work from the rich information hidden in text data.