• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.029 seconds

Applying Text Mining to Identify Factors Which Affect Likes and Dislikes of Online News Comments (텍스트마이닝을 통한 댓글의 공감도 및 비공감도에 영향을 미치는 댓글의 특성 연구)

  • Kim, Jeonghun;Song, Yeongeun;Jin, Yunseon;kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.14 no.2
    • /
    • pp.159-176
    • /
    • 2015
  • As a public medium and one of the big data sources that is accumulated informally and real time, online news comments or replies are considered a significant resource to understand mentalities of article readers. The comments are also being regarded as an important medium of WOM (Word of Mouse) about products, services or the enterprises. If the diffusing effect of the comments is referred to as the degrees of agreement and disagreement from an angle of WOM, figuring out which characteristics of the comments would influence the agreements or the disagreements to the comments in very early stage would be very worthwhile to establish a comment-based eWOM (electronic WOM) strategy. However, investigating the effects of the characteristics of the comments on eWOM effect has been rarely studied. According to this angle, this study aims to conduct an empirical analysis which understands the characteristics of comments that affect the numbers of agreement and disagreement, as eWOM performance, to particular news articles which address a specific product, service or enterprise per se. While extant literature has focused on the quantitative attributes of the comments which are collected by manually, this paper used text mining techniques to acquire the qualitative attributes of the comments in an automatic and cost effective manner.

Predicting Movie Revenue by Online Review Mining: Using the Opening Week Online Review (영화 흥행성과 예측을 위한 온라인 리뷰 마이닝 연구: 개봉 첫 주 온라인 리뷰를 활용하여)

  • Cho, Seung Yeon;Kim, Hyun-Koo;Kim, Beomsoo;Kim, Hee-Woong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.113-134
    • /
    • 2014
  • Since a movie is an experience goods, purchase can be decided upon preliminary information and evaluation. There are ongoing researches on what impact online reviews might have on movie revenues. Whereas research in the past was focused on the effect of online reviews. The influence of online reviews appears to be significant in products like a movie because it is difficult to evaluate the feature prior to "consuming" the product. Since an online review is regarded to be objective, consumers find it more trustworthy. Contrary to prior research focused on movie review ratings and volume, we focus moves on movie features related specific reviews. This research proposes a predictive model for movie revenue generation. We decided 15 criteria to classify movie features collected from online reviews through the online review mining and made up feature keyword list each criterion. In addition, we performed data preprocessing and dimensional reduction for data mining through factor analysis. We suggest the movie revenue predictive model is tested using discriminant analysis. Following the discriminant analysis, we found that online review factors can be used to predict movie popularity and revenue stream. We also expect using this predictive model, marketers and strategic decision makers can allocate their resources in more parsimonious fashion.

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.

Analysis of User Requirements Prioritization Using Text Mining : Focused on Online Game (텍스트마이닝을 활용한 사용자 요구사항 우선순위 도출 방법론 : 온라인 게임을 중심으로)

  • Jeong, Mi Yeon;Heo, Sun-Woo;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • Recently, as the internet usage is increasing, accordingly generated text data is also increasing. Because this text data on the internet includes users' comments, the text data on the Internet can help you get users' opinion more efficiently and effectively. The topic of text mining has been actively studied recently, but it primarily focuses on either the content analysis or various improving techniques mostly for the performance of target mining algorithms. The objective of this study is to propose a novel method of analyzing the user's requirements by utilizing the text-mining technique. To complement the existing survey techniques, this study seeks to present priorities together with efficient extraction of customer requirements from the text data. This study seeks to identify users' requirements, derive the priorities of requirements, and identify the detailed causes of high-priority requirements. The implications of this study are as follows. First, this study tried to overcome the limitations of traditional investigations such as surveys and VOCs through text mining of online text data. Second, decision makers can derive users' requirements and prioritize without having to analyze numerous text data manually. Third, user priorities can be derived on a quantitative basis.

Analysis of Online Behavior and Prediction of Learning Performance in Blended Learning Environments

  • JO, Il-Hyun;PARK, Yeonjeong;KIM, Jeonghyun;SONG, Jongwoo
    • Educational Technology International
    • /
    • v.15 no.2
    • /
    • pp.71-88
    • /
    • 2014
  • A variety of studies to predict students' performance have been conducted since educational data such as web-log files traced from Learning Management System (LMS) are increasingly used to analyze students' learning behaviors. However, it is still challenging to predict students' learning achievement in blended learning environment where online and offline learning are combined. In higher education, diverse cases of blended learning can be formed from simple use of LMS for administrative purposes to full usages of functions in LMS for online distance learning class. As a result, a generalized model to predict students' academic success does not fulfill diverse cases of blended learning. This study compares two blended learning classes with each prediction model. The first blended class which involves online discussion-based learning revealed a linear regression model, which explained 70% of the variance in total score through six variables including total log-in time, log-in frequencies, log-in regularities, visits on boards, visits on repositories, and the number of postings. However, the second case, a lecture-based class providing regular basis online lecture notes in Moodle show weaker results from the same linear regression model mainly due to non-linearity of variables. To investigate the non-linear relations between online activities and total score, RF (Random Forest) was utilized. The results indicate that there are different set of important variables for the two distinctive types of blended learning cases. Results suggest that the prediction models and data-mining technique should be based on the considerations of diverse pedagogical characteristics of blended learning classes.

Mining Association Rules from the Web Access Log of an Online News website (온라인 뉴스 웹사이트의 로그를 이용한 연관규칙 발견에 관한 연구)

  • Hwang, Hyunseok;Yoo, Keedong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • Today a lot of functional areas of a firm are operated on the Web. Online shopping malls analyze web log recording customers' activities on the web to connect them to business outcomes. Not only commercial websites, but online news sites also need to collect and analyze web logs to understand their news readers' interest. However, little research has been performed yet. In this research we mined the web access log of an online news website and conduct Market Basket Analysis to uncover the association rules among the categories of news articles. The research is composed of two stages: 1) Identifying the individual session of a visitor; 2) Mining association rule from news articles read by each session. We gather 7-day access logs two times. The results of log mining and meanings of association rules are suggested with managerial implications in conclusion section.

Toward understanding learning patterns in an open online learning platform using process mining (프로세스 마이닝을 활용한 온라인 교육 오픈 플랫폼 내 학습 패턴 분석 방법 개발)

  • Taeyoung Kim;Hyomin Kim;Minsu Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.285-301
    • /
    • 2023
  • Due to the increasing demand and importance of non-face-to-face education, open online learning platforms are getting interests both domestically and internationally. These platforms exhibit different characteristics from online courses by universities and other educational institutions. In particular, students engaged in these platforms can receive more learner autonomy, and the development of tools to assist learning is required. From the past, researchers have attempted to utilize process mining to understand realistic study behaviors and derive learning patterns. However, it has a deficiency to employ it to the open online learning platforms. Moreover, existing research has primarily focused on the process model perspective, including process model discovery, but lacks a method for the process pattern and instance perspectives. In this study, we propose a method to identify learning patterns within an open online learning platform using process mining techniques. To achieve this, we suggest three different viewpoints, e.g., model-level, variant-level, and instance-level, to comprehend the learning patterns, and various techniques are employed, such as process discovery, conformance checking, autoencoder-based clustering, and predictive approaches. To validate this method, we collected a learning log of machine learning-related courses on a domestic open education platform. The results unveiled a spaghetti-like process model that can be differentiated into a standard learning pattern and three abnormal patterns. Furthermore, as a result of deriving a pattern classification model, our model achieved a high accuracy of 0.86 when predicting the pattern of instances based on the initial 30% of the entire flow. This study contributes to systematically analyze learners' patterns using process mining.

Approximation of Frequent Itemsets with Maximum Size by One-scan for Association Rule Mining Application (연관 규칙 탐사 응용을 위한 한 번 읽기에 의한 최대 크기 빈발항목 추정기법)

  • Han, Gab-Soo
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.475-484
    • /
    • 2008
  • Nowadays, lots of data mining applications based on continuous and online real time are increasing by the rapid growth of the data processing technique. In order to do association rule mining in that application, we have to use new techniques to find the frequent itemsets. Most of the existing techniques to find the frequent itemsets should scan the total database repeatedly. But in the application based on the continuous and online real time, it is impossible to scan the total database repeatedly. We have to find the frequent itemsets with only one scan of the data interval for that kind of application. So in this paper we propose an approximation technique which finds the maximum size of the frequent itemsets and items included in the maximum size of the frequent itemsets for the processing of association rule mining.

Text Mining and Visualization of Papers Reviews Using R Language

  • Li, Jiapei;Shin, Seong Yoon;Lee, Hyun Chang
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.170-174
    • /
    • 2017
  • Nowadays, people share and discuss scientific papers on social media such as the Web 2.0, big data, online forums, blogs, Twitter, Facebook and scholar community, etc. In addition to a variety of metrics such as numbers of citation, download, recommendation, etc., paper review text is also one of the effective resources for the study of scientific impact. The social media tools improve the research process: recording a series online scholarly behaviors. This paper aims to research the huge amount of paper reviews which have generated in the social media platforms to explore the implicit information about research papers. We implemented and shown the result of text mining on review texts using R language. And we found that Zika virus was the research hotspot and association research methods were widely used in 2016. We also mined the news review about one paper and derived the public opinion.

Text Mining Analysis of the Online Counseling Contents of Nursery School Teachers (텍스트 마이닝을 활용한 어린이집교사 온라인 상담의 내용분석)

  • Jeon, Ji Won;Lim, Sun Ah;Jung, Yunhee
    • Korean Journal of Childcare and Education
    • /
    • v.16 no.6
    • /
    • pp.253-272
    • /
    • 2020
  • Objective: This study aimed to analyze the counseling contents of daycare center teachers by using text mining and semantic network analysis methods to find the necessary support directions for daycare teachers and to improve the quality of child-care. Methods: Five hundred thirteen cases of counseling recorded on the open bulletin board of online counseling (Naver Bands for Nursery Teacher Counseling) were collected, and frequency analysis, centrality solidarity analysis, and machine learning-based topic analysis were conducted using the NetMiner4.3 program. Results: First, 'teacher-to-child ratio' was highest in the frequency. Second, 'colleagues' were all high in all centrality analysis. Third, machine learning-based topical analysis shows that the topics were categorized as subjects about 'childcare and education', 'working environment that supports professional development' and 'working condition', and among them, 'first-time teacher concerns' accounted for 44% of the total counseling content. Conclusion/Implications: This study implied that it is necessary to provide high-quality child-care and education to infants by lowering the 'teacher-to-child ratio', and a systematic program is needed to help improve effective communication skills in interpersonal relationships such as between parents, fellow teachers, and principals. In addition, self-development and efforts to improve teachers expertise should be prioritized in order to improve infant care quality and quality of teachers.