• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.026 seconds

Keyword Analysis of Arboretums and Botanical Gardens Using Social Big Data

  • Shin, Hyun-Tak;Kim, Sang-Jun;Sung, Jung-Won
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.2
    • /
    • pp.233-243
    • /
    • 2020
  • This study collects social big data used in various fields in the past 9 years and explains the patterns of major keywords of the arboretums and botanical gardens to use as the basic data to establish operational strategies for future arboretums and botanical gardens. A total of 6,245,278 cases of data were collected: 4,250,583 from blogs (68.1%), 1,843,677 from online cafes (29.5%), and 151,018 from knowledge search engine (2.4%). As a result of refining valid data, 1,223,162 cases were selected for analysis. We came up with keywords through big data, and used big data program Textom to derive keywords of arboretums and botanical gardens using text mining analysis. As a result, we identified keywords such as 'travel', 'picnic', 'children', 'festival', 'experience', 'Garden of Morning Calm', 'program', 'recreation forest', 'healing', and 'museum'. As a result of keyword analysis, we found that keywords such as 'healing', 'tree', 'experience', 'garden', and 'Garden of Morning Calm' received high public interest. We conducted word cloud analysis by extracting keywords with high frequency in total 6,245,278 titles on social media. The results showed that arboretums and botanical gardens were perceived as spaces for relaxation and leisure such as 'travel', 'picnic' and 'recreation', and that people had high interest in educational aspects with keywords such as 'experience' and 'field trip'. The demand for rest and leisure space, education, and things to see and enjoy in arboretums and botanical gardens increased than in the past. Therefore, there must be differentiation and specialization strategies such as plant collection strategies, exhibition planning and programs in establishing future operation strategies.

Big Data Analysis of Busan Civil Affairs Using the LDA Topic Modeling Technique (LDA 토픽모델링 기법을 활용한 부산시 민원 빅데이터 분석)

  • Park, Ju-Seop;Lee, Sae-Mi
    • Informatization Policy
    • /
    • v.27 no.2
    • /
    • pp.66-83
    • /
    • 2020
  • Local issues that occur in cities typically garner great attention from the public. While local governments strive to resolve these issues, it is often difficult to effectively eliminate them all, which leads to complaints. In tackling these issues, it is imperative for local governments to use big data to identify the nature of complaints, and proactively provide solutions. This study applies the LDA topic modeling technique to research and analyze trends and patterns in complaints filed online. To this end, 9,625 cases of online complaints submitted to the city of Busan from 2015 to 2017 were analyzed, and 20 topics were identified. From these topics, key topics were singled out, and through analysis of quarterly weighting trends, four "hot" topics(Bus stops, Taxi drivers, Praises, and Administrative handling) and four "cold" topics(CCTV installation, Bus routes, Park facilities including parking, and Festivities issues) were highlighted. The study conducted big data analysis for the identification of trends and patterns in civil affairs and makes an academic impact by encouraging follow-up research. Moreover, the text mining technique used for complaint analysis can be used for other projects requiring big data processing.

A Text Mining Analysis of Attributes for Satisfaction and Effect of Consumer Ratings to Korea and China Duty Free Stores - Focusing on Chinese Tourists - (텍스트 마이닝을 통한 한국과 중국 시내면세점 만족 속성과 소비자 평점에 미치는 영향 분석 -중국인 관광객을 중심으로)

  • Yang, DaSom;Kim, Jong Uk
    • Journal of Digital Convergence
    • /
    • v.18 no.8
    • /
    • pp.1-9
    • /
    • 2020
  • This study aims to find new attributes by analyzing Korea and China duty free store online reviews and examine the influence of these attributes on star ratings(satisfaction)of duty free store. For study, we used Dazhong Dianping that largest online review site in China. Using R, we analyzed 5,659 reviews of Korea duty free store and 4,051 reviews of China duty free store. According to the analysis, Sale, Food and Membership attributes had a positive effect on star rating of Korea duty free store. Sale, Product, Airport, Food and Membership had a positive effect on star rating of China duty free store. This study has identified new factors such as food that showed the importance of providing space of restaurants while shopping at duty free store. This study has contributed to the existing literature by finding new attribute such as food. Practically, this finding will help to duty free industry workers better understand the impact of providing space of restaurants on duty free store.

Investigating the Impact of Corporate Social Responsibility on Firm's Short- and Long-Term Performance with Online Text Analytics (온라인 텍스트 분석을 통해 추정한 기업의 사회적책임 성과가 기업의 단기적 장기적 성과에 미치는 영향 분석)

  • Lee, Heesung;Jin, Yunseon;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.13-31
    • /
    • 2016
  • Despite expectations of short- or long-term positive effects of corporate social responsibility (CSR) on firm performance, the results of existing research into this relationship are inconsistent partly due to lack of clarity about subordinate CSR concepts. In this study, keywords related to CSR concepts are extracted from atypical sources, such as newspapers, using text mining techniques to examine the relationship between CSR and firm performance. The analysis is based on data from the New York Times, a major news publication, and Google Scholar. We used text analytics to process unstructured data collected from open online documents to explore the effects of CSR on short- and long-term firm performance. The results suggest that the CSR index computed using the proposed text - online media - analytics predicts long-term performance very well compared to short-term performance in the absence of any internal firm reports or CSR institute reports. Our study demonstrates the text analytics are useful for evaluating CSR performance with respect to convenience and cost effectiveness.

Analysis of Keywords and Language Networks of Pedagogical Problems in the Secondary-School Teacher's Employment Exam : Focusing on the 2019~2022 School Year Exam

  • Kwon, Choong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.115-124
    • /
    • 2022
  • The purpose of this study is to analyze and present keywords, trends, and language networks of keywords for each year of the pedagogical exam of the secondary teacher's employment exam for the 2019~2022 school year. The main research methods were text mining technique and language network analysis method, and analysis programs were KrKwic, Wordcloud Maker, Ucinet6, NetDraw, etc. The research results are as follows; First, keywords such as teacher, student, curriculum, class, and evaluation appeared in the top rankings, and keywords (online, wiki, discussion ceremony, information, etc.) that reflect the recent online class progress in the current COVID-19 situation also tended to appear. The keywords with high frequency of occurrence in the four-year integrated text were student(44), teacher(39), class(27), school(18), curriculum(16), online(10), and discussion method(8). Second, the overall language network of the keywords with high frequency of 4 years showed a significant level of density(0.566), total number of links(492), and average degree of links(16.4). The degree centrality was found in the order of teacher(199.0), class(197.0), student(185.0), and school(150.0). Betweenness centrality was found in the order of teacher(30.859), class(18.956), student(16.054), and school (15.745). It is expected that the results of this study will serve as data to be considered for preparatory teachers, institutions and related persons, and teachers and administrators of secondary school teacher training institutions.

Social Perceptions and Attitudes toward the Elderly Shared Online: Focusing on Social Big Data Analysis (온라인상에서 공유되는 노인에 대한 사회적 인식과 태도: 소셜 빅데이터 분석을 중심으로)

  • An, Soontae;Lee, Hannah;Chung, Soondool
    • 한국노년학
    • /
    • v.41 no.4
    • /
    • pp.505-525
    • /
    • 2021
  • Purpose. The purpose of this study is to examine how the phrase "old person" are expressed and used in the online sphere. Based on the theoretical concept of stigma, this study investigates the images and attitudes in society toward the elderly, and the characteristics of hate speech aimed at the elderly. Method. This study conducted text mining based on social big data using anonymous conversations. Results. It was confirmed that the elderly images shared online were generally negative. The attitudes expressed toward them also tended to be negative due to the negative images that are propagated of the elderly. The hate speech relating to the elderly, in usages such as 'Teul-ttag' and 'Kon-dae', were mainly identified in comments that negatively evaluate the elderly, and these expressions demonstrate the depth of hate and discrimination towards the elderly who are considered burdensome by young people. Interestingly, the hateful expressions towards the elderly were found more with regard to issues related to politics and economics and not just any content about the elderly. Conclusions. This study discussed the ways and means to enhance inter-generational understanding and solidity.

Analysis of Changes in Restaurant Attributes According to the Spread of Infectious Diseases: Application of Text Mining Techniques (감염병 확산에 따른 레스토랑 선택속성 변화 분석: 텍스트마이닝 기법 적용)

  • Joonil Yoo;Eunji Lee;Chulmo Koo
    • Information Systems Review
    • /
    • v.25 no.4
    • /
    • pp.89-112
    • /
    • 2023
  • In March 2020, as it was declared a COVID-19 pandemic, various quarantine measures were taken. Accordingly, many changes have occurred in the tourism and hospitality industries. In particular, quarantine guidelines, such as the introduction of non-face-to-face services and social distancing, were implemented in the restaurant industry. For decades, research on restaurant attributes has emphasized the importance of three attributes: atmosphere, service quality, and food quality. Nevertheless, to the best of our knowledge, research on restaurant attributes considering the COVID-19 situation is insufficient. To respond to this call, this study attempted an exploratory approach to classify new restaurant attributes based on understanding environmental changes. This study considered 31,115 online reviews registered in Naverplace as an analysis unit, with 475 general restaurants located in Euljiro, Seoul. Further, we attempted to classify restaurant attributes by clustering words within online reviews through TF-IDF and LDA topic modeling techniques. As a result of the analysis, the factors of "prevention of infectious diseases" were derived as new attributes of restaurants in the context of COVID-19 situations, along with the atmosphere, service quality, and food quality. This study is of academic significance by expanding the literature of existing restaurant attributes in that it categorized the three attributes presented by existing restaurant attributes and further presented new attributes. Moreover, the analysis results have led to the formulation of practical recommendations, considering both the operational aspects of restaurants and policy implications.

Support vector machines for big data analysis (빅 데이터 분석을 위한 지지벡터기계)

  • Choi, Hosik;Park, Hye Won;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.5
    • /
    • pp.989-998
    • /
    • 2013
  • We cannot analyze big data, which attracts recent attentions in industry and academy, by batch processing algorithms developed in data mining because big data, by definition, cannot be uploaded and processed in the memory of a single system. So an imminent issue is to develop various leaning algorithms so that they can be applied to big data. In this paper, we review various algorithms for support vector machines in the literature. Particularly, we introduce online type and parallel processing algorithms that are expected to be useful in big data classifications and compare the strengths, the weaknesses and the performances of those algorithms through simulations for linear classification.

A Study on the Analysis of Factors that Influence Internet Usage of Adolescence (청소년 시기의 인터넷 사용에 영향을 미치는 요인 분석 연구)

  • Yun, You-Dong;Ji, Hye-Sung;Lim, Heui-Seok
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.5
    • /
    • pp.55-71
    • /
    • 2016
  • Recently, Internet addiction problem has arised due to increasing negative effects about excessive internet use among youth. In this study, by utilizing the '11th youth health behaviors online survey data', we discuss the countermeasures for excessive internet usage of adolescence based on various analysis. we examined the effects of demographic characteristic factors, psychological factors, behavioral factors on internet usage of adolescence. As a result, it was confirmed that there were various variables that influenced adolescent internet usage which were not approached in previous researches. And through these results, we can confirm these variables. In addition, we can also provide countermeasures on excessive internet usages by that of adolescents.

The Effect of Individual Differences on Consumer satisfaction and Behavioral Intention in Online Shopping: The Role of Information Privacy Concerns (온라인 쇼핑에서 개인적 특성차이가 고객 만족도와 구매 의도에 미치는 영향: 정보보안 우려감의 역할을 중심으로)

  • Moon, Yun Ji
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2717-2722
    • /
    • 2013
  • Sophisticated business intelligent software and personalized web services help collecting and mining huge amounts of personal information. This increase in digitalized personal information and advances in Internet technologies poses new challenges to consumers' information privacy. Based on the identified concept of information privacy concerns (IPC), this study additionally explores the interrelationships among consumers' individual characteristics(self-efficacy, digital literacy, customer alienation), customer satisfaction and intention to buy in e-commerce process. Academically, this study extends IPC to an empirical research model by identifying the conceptualization and organization of IPC. Moreover, practically, e-commerce providers can develop how to relieve IPC of online consumers.