• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.033 seconds

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

Exploring Changes in Digital Keywords on Online Bookstores and Instagram: A Comparative Analysis of Before and After COVID-19 (인터넷 서점과 인스타그램에 나타난 디지털 키워드 변화 탐색 - 코로나19 발생 전후 비교 분석 -)

  • Suyeon Je;Siwon Kim;Rani Eom
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.715-724
    • /
    • 2023
  • This study analyzed the shifts that occurred before and after the outbreak of COVID-19 by scrutinizing digital keywords derived from prominent culture media, such as books and instagram. The analysis identified trends rooted in digital terminology. For this study, the period 2017 to 2022 was divided into three-year segments, before and after the outbreak of COVID-19. Subsequently, an analysis was conducted using digital keywords to assess the number of digital-related books and book hashtags, the number of instagram mentions, and relevant keywords. We found that COVID-19 exerted a discernible influence on information related to digital keywords, substantially impacting both the book publishing market and instagram. Notably, digital-related books have been published in a variety of fields since the outbreak, and new fields are emerging. The year 2020 saw the most significant growth in the mentions of digital terms on instagram. Such terms were used in conjunction with terminology related to people working in a digital environment, endeavors aimed at revenue generation in online spaces, leisure activities associated with art and culture, and online service platforms. Through the analysis of digital keywords, this study is expected to contribute to the understanding of digital trends and their future trajectories.

A Regression-Model-based Method for Combining Interestingness Measures of Association Rule Mining (연관상품 추천을 위한 회귀분석모형 기반 연관 규칙 척도 결합기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.127-141
    • /
    • 2017
  • Advances in Internet technologies and the proliferation of mobile devices enabled consumers to approach a wide range of goods and services, while causing an adverse effect that they have hard time reaching their congenial items even if they devote much time to searching for them. Accordingly, businesses are using the recommender systems to provide tools for consumers to find the desired items more easily. Association Rule Mining (ARM) technology is advantageous to recommender systems in that ARM provides intuitive form of a rule with interestingness measures (support, confidence, and lift) describing the relationship between items. Given an item, its relevant items can be distinguished with the help of the measures that show the strength of relationship between items. Based on the strength, the most pertinent items can be chosen among other items and exposed to a given item's web page. However, the diversity of the measures may confuse which items are more recommendable. Given two rules, for example, one rule's support and confidence may not be concurrently superior to the other rule's. Such discrepancy of the measures in distinguishing one rule's superiority from other rules may cause difficulty in selecting proper items for recommendation. In addition, in an online environment where a web page or mobile screen can provide a limited number of recommendations that attract consumer interest, the prudent selection of items to be included in the list of recommendations is very important. The exposure of items of little interest may lead consumers to ignore the recommendations. Then, such consumers will possibly not pay attention to other forms of marketing activities. Therefore, the measures should be aligned with the probability of consumer's acceptance of recommendations. For this reason, this study proposes a model-based approach to combine those measures into one unified measure that can consistently determine the ranking of recommended items. A regression model was designed to describe how well the measures (independent variables; i.e., support, confidence, and lift) explain consumer's acceptance of recommendations (dependent variables, hit rate of recommended items). The model is intuitive to understand and easy to use in that the equation consists of the commonly used measures for ARM and can be used in the estimation of hit rates. The experiment using transaction data from one of the Korea's largest online shopping malls was conducted to show that the proposed model can improve the hit rates of recommendations. From the top of the list to 13th place, recommended items in the higher rakings from the proposed model show the higher hit rates than those from the competitive model's. The result shows that the proposed model's performance is superior to the competitive model's in online recommendation environment. In a web page, consumers are provided around ten recommendations with which the proposed model outperforms. Moreover, a mobile device cannot expose many items simultaneously due to its limited screen size. Therefore, the result shows that the newly devised recommendation technique is suitable for the mobile recommender systems. While this study has been conducted to cover the cross-selling in online shopping malls that handle merchandise, the proposed method can be expected to be applied in various situations under which association rules apply. For example, this model can be applied to medical diagnostic systems that predict candidate diseases from a patient's symptoms. To increase the efficiency of the model, additional variables will need to be considered for the elaboration of the model in future studies. For example, price can be a good candidate for an explanatory variable because it has a major impact on consumer purchase decisions. If the prices of recommended items are much higher than the items in which a consumer is interested, the consumer may hesitate to accept the recommendations.

A Study on Continuous Monitoring Reinforcement for Sales Audit Using Process Mining Under Big Data Environment (빅데이터 환경에서 프로세스 마이닝을 이용한 영업감사 상시 모니터링 강화에 대한 연구)

  • Yoo, Young-Seok;Park, Han-Gyu;Back, Seung-Hoon;Hong, Sung-Chan
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.123-131
    • /
    • 2016
  • Process mining in big data environment utilize a number of data were generated from the business process. It generates lots of knowledge and insights regarding implementation and improvement of the process through the event log of the company's enterprise resource planning (ERP) system. In recent years, various research activities engaged with the audit work of company organizations are trying actively by using the maximum strength of the mining process. However, domestic studies on applicable sales auditing system for the process mining are insufficient under big data environment. Therefore, we propose process-mining methods that can be optimally applied to online and traditional auditing system. In advance, we propose continuous monitoring information system that can early detect and prevent the risk under the big data environment by monitoring risk factors in the organizations of enterprise. The scope of the research of this paper is to design a pre-verification system for risk factor via practical examples in sales auditing. Furthermore, realizations of preventive audit, continuous monitoring for high risk, reduction of fraud, and timely action for violation of rules are enhanced by proposed sales auditing system. According to the simulation results, avoidance of financial risks, reduction of audit period, and improvement of audit quality are represented.

A Study of Comparison between Cruise Tours in China and U.S.A through Big Data Analytics

  • Shuting, Tao;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.6
    • /
    • pp.1-11
    • /
    • 2017
  • The purpose of this study was to compare the cruise tours between China and U.S.A. through the semantic network analysis of big data by collecting online data with SCTM (Smart crawling & Text mining), a data collecting and processing program. The data analysis period was from January $1^{st}$, 2015 to August $15^{th}$, 2017, meanwhile, "cruise tour, china", "cruise tour, usa" were conducted to be as keywords to collet related data and packaged Netdraw along with UCINET 6.0 were utilized for data analysis. Currently, Chinese cruisers concern on the cruising destinations while American cruisers pay more attention on the onboard experience and cruising expenditure. After performing CONCOR (convergence of iterated correlation) analysis, for Chinese cruise tour, there were three clusters created with domestic destinations, international destinations and hospitality tourism. As for American cruise tour, four groups have been segmented with cruise expenditure, onboard experience, cruise brand and destinations. Since the cruise tourism of America was greatly developed, this study also was supposed to provide significant and social network-oriented suggestions for Chinese cruise tourism.

Design and Implementation of specialized Web 2.0 Travel Agency System (특화된 웹2.0 여행사 시스템의 설계 및 구현)

  • Kim, Jung Sook;Lee, Ya Ri;Hong, Kyung Pyo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • This paper is an explanation of a design and an implementation of Web 2.0 online travel agency system for frequent decision-making. On the Web 2.0 travel agency system, optimized information is obtained by applying data mining technology such as association rules, decision trees, and neural networks, and this system is a unified system that consists of the block systems of hotels, ground traffic, and flights in tour packages of a travel agency system. Furthermore, it is implemented to manage the system that is not for the administrator of a travel agency system, but for users or communities that use the system need their own information. The expected effect of this system is to maximize the investment company's efficiency through a new-concept interest model created by B2C customers, and also B2B small and medium-sized travel agencies adopting the system. As a result, it is a system that stimulates dormant customer activity and prevents good customers from leaving by maximizing the merit and capacity of the existed web site for marketing. Moreover, this system is also a model for people who plan customized travel agency business, and will show a way for the domestic and international travel agency industry's globalization.

Spatio-temporal Load Analysis Model for Power Facilities using Meter Reading Data (검침데이터를 이용한 전력설비 시공간 부하분석모델)

  • Shin, Jin-Ho;Kim, Young-Il;Yi, Bong-Jae;Yang, Il-Kwon;Ryu, Keun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.1910-1915
    • /
    • 2008
  • The load analysis for the distribution system and facilities has relied on measurement equipment. Moreover, load monitoring incurs huge costs in terms of installation and maintenance. This paper presents a new model to analyze wherein facilities load under a feeder every 15 minutes using meter reading data that can be obtained from a power consumer every 15 minute or a month even without setting up any measuring equipment. After the data warehouse is constructed by interfacing the legacy system required for the load calculation, the relationship between the distribution system and the power consumer is established. Once the load pattern is forecasted by applying clustering and classification algorithm of temporal data mining techniques for the power customer who is not involved in Automatic Meter Reading(AMR), a single-line diagram per feeder is created, and power flow calculation is executed. The calculation result is analyzed using various temporal and spatial analysis methods such as Internet Geographic Information System(GIS), single-line diagram, and Online Analytical Processing (OLAP).

A Comparison of Starbucks between South Korea and U.S.A. through Big Data Analysis (빅데이터 분석을 통한 한국과 미국의 스타벅스 비교 분석)

  • Jo, Ara;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.23 no.8
    • /
    • pp.195-205
    • /
    • 2017
  • The purpose of this study was to compare the Starbucks in South Korea with Starbucks in U.S.A through the semantic network analysis of big data by collecting online data with SCTM(Smart Crawling & Text Mining) program which was developed by big data research institute at Kyungsung University, a data collecting and processing program. The data collection period was from January 1st 2014 to December 7th 2017, and packaged Netdraw along with UCINET 6.0 were utilized for data analysis and visualization. After performing CONCOR(convergence of iterated correlation) analysis and centrality analysis, this study illustrated the current characteristics of Starbucks for Korea and U.S.A reflected by the social network and the differences between Korea and U.S.A. Since the Starbucks was greatly developed, especially in Korea. this study also was supposed to provide significant and social-network oriented suggestions for Starbucks USA, Starbucks Korea and also the whole coffee industry. Also this study revealed that big data analytics can generate new insights into variables that have been extensively studied in existing hospitality literature. In addition, implications for theory and practice as well as directions for future research are discussed.

Defection Detection Analysis Based on Time-Dependent Data

  • Song, Hee-Seok;Kim, Jae-Kyeong;Chae, Kyung-Hee
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2002.11a
    • /
    • pp.445-453
    • /
    • 2002
  • Past and current customer behavior is the best predicator of future customer behavior. This paper introduces a procedure on personalized defection detection and prevention for an online game site. The basic idea for our defection detection and prevention is adopted from the observation that potential defectors have a tendency to take a couple of months or weeks to gradually change their behavior (i.e. trim-out their usage volume) before their eventual withdrawal. For this purpose, we suggest a SOM (Self-Organizing Map) based procedure to determine the possible states of customer behavior from past behavior data. Based on this representation of the state of behavior, potential defectors are detected by comparing their monitored trajectories of behavior states with frequent and confident trajectories of past defectors. The key feature of this study includes a defection prevention procedure which recommends the desirable behavior state for the ext period so as to lower the likelihood of defection. The defection prevention procedure can be used to design a marketing campaign on an individual basis because it provides desirable behavior patterns for the next period. The experiments demonstrate that our approach is effective for defection prevention and efficient for defection detection because it predicts potential defectors without deterioration of prediction accuracy compared to that of the MLP (Multi-Layer Perceptron) neural network.

  • PDF

How Facebook Functions in a Social Movement: An Examination Using the Web Mining Approach

  • Cao, Wenny;Cheong, Angus;Li, Zizi
    • Asian Journal for Public Opinion Research
    • /
    • v.1 no.4
    • /
    • pp.268-291
    • /
    • 2014
  • Social media is becoming more and more important in social movements. This study, adopting the web mining approach, attempts to investigate how social media, Facebook in particular, functioned in the "May 25 Protest" and the "May 27 Protest", two movements which broke out in Macao on 25 and 27 May 2014, respectively, against the Retirement Package Bill. In the two protests, Macao residents deployed Facebook to share information and motivated people's participation. Twelve events (181,106 people invited) and 36 groups/pages (41,266 members) related on Facebook were examined. Results showed that the information flow on Facebook fluctuated in accordance with the event development in reality. Multiple patterns of manifestation, such as video of adopted news or songs, designed profile (protest icon), original ironic pictures, self-organized clubs by undergraduates and white T-shirts as a symbol, among others, appeared online and interacted with offline actions. It was also found that social media assisted the information diffusion and provided persuasive reasons for netizens to join the movement. Social media helped to expand movement influence in providing a platform for diversified performances for actions taken in a protest, which could express and develop core and consistent movement repertoire.