• Title/Summary/Keyword: Online mining

Search Result 398, Processing Time 0.027 seconds

A study on cultural characteristics of foreign tourists visiting Korea based on text mining of online review (온라인 리뷰의 텍스트 마이닝에 기반한 한국방문 외국인 관광객의 문화적 특성 연구)

  • Yao, Ziyan;Kim, Eunmi;Hong, Taeho
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.171-191
    • /
    • 2020
  • Purpose The study aims to compare the online review writing behavior of users in China and the United States through text mining on online reviews' text content. In particular, existing studies have verified that there are differences in online reviews between different cultures. Therefore, the purpose of this study is to compare the differences between reviews written by Chinese and American tourists by analyzing text contents of online reviews based on cultural theory. Design/methodology/approach This study collected and analyzed online review data for hotels, targeting Chinese and US tourists who visited Korea. Then, we analyzed review data through text mining like sentiment analysis and topic modeling analysis method based on previous research analysis. Findings The results showed that Chinese tourists gave higher ratings and relatively less negative ratings than American tourists. And American tourists have more negative sentiments and emotions in writing online reviews than Chinese tourists. Also, through the analysis results using topic modeling, it was confirmed that Chinese tourists mentioned more topics about the hotel location, room, and price, while American tourists mentioned more topics about hotel service. American tourists also mention more topics about hotels than Chinese tourists, indicating that American tourists tend to provide more information through online reviews.

Text Mining in Online Social Networks: A Systematic Review

  • Alhazmi, Huda N
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.396-404
    • /
    • 2022
  • Online social networks contain a large amount of data that can be converted into valuable and insightful information. Text mining approaches allow exploring large-scale data efficiently. Therefore, this study reviews the recent literature on text mining in online social networks in a way that produces valid and valuable knowledge for further research. The review identifies text mining techniques used in social networking, the data used, tools, and the challenges. Research questions were formulated, then search strategy and selection criteria were defined, followed by the analysis of each paper to extract the data relevant to the research questions. The result shows that the most social media platforms used as a source of the data are Twitter and Facebook. The most common text mining technique were sentiment analysis and topic modeling. Classification and clustering were the most common approaches applied by the studies. The challenges include the need for processing with huge volumes of data, the noise, and the dynamic of the data. The study explores the recent development in text mining approaches in social networking by providing state and general view of work done in this research area.

An Online Response System for Anomaly Traffic by Incremental Mining with Genetic Optimization

  • Su, Ming-Yang;Yeh, Sheng-Cheng
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.375-381
    • /
    • 2010
  • A flooding attack, such as DoS or Worm, can be easily created or even downloaded from the Internet, thus, it is one of the main threats to servers on the Internet. This paper presents an online real-time network response system, which can determine whether a LAN is suffering from a flooding attack within a very short time unit. The detection engine of the system is based on the incremental mining of fuzzy association rules from network packets, in which membership functions of fuzzy variables are optimized by a genetic algorithm. The incremental mining approach makes the system suitable for detecting, and thus, responding to an attack in real-time. This system is evaluated by 47 flooding attacks, only one of which is missed, with no false positives occurring. The proposed online system belongs to anomaly detection, not misuse detection. Moreover, a mechanism for dynamic firewall updating is embedded in the proposed system for the function of eliminating suspicious connections when necessary.

Customer Value Proposition Methodology Using Text Mining of Online Customer Reviews (온라인 고객 리뷰에 대한 텍스트마이닝을 활용한 고객가치제안 방법)

  • Han, Young-Kyung;Kim, Chul-Min;Park, Kwang-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.85-97
    • /
    • 2021
  • Online consumer activities have increased considerably since the COVID-19 outbreak. For the products and services which have an impact on everyday life, online reviews and recommendations can play a significant role in consumer decision-making processes. Thus, to better serve their customers, online firms are required to build online-centric marketing strategies. Especially, it is essential to define core value of customers based on the online customer reviews and to propose these values to their customers. This study discovers specific perceived values of customers in regard to a certain product and service, using online customer reviews and proposes a customer value proposition methodology which enables online firms to develop more effective marketing strategies. In order to discover customers value, the methodology employs a text-mining technology, which combines a sentiment analysis and topic modeling. By the methodology, customer emotions and value factors can be more clearly defined. It is expected that online firms can better identify value elements of their respective customers, provide appropriate value propositions, and thus gain sustainable competitive advantage.

Methodology for Applying Text Mining Techniques to Analyzing Online Customer Reviews for Market Segmentation (온라인 고객리뷰 분석을 통한 시장세분화에 텍스트마이닝 기술을 적용하기 위한 방법론)

  • Kim, Keun-Hyung;Oh, Sung-Ryoel
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.8
    • /
    • pp.272-284
    • /
    • 2009
  • In this paper, we proposed the methodology for analyzing online customer reviews by using text mining technologies. We introduced marketing segmentation into the methodology because it would be efficient and effective to analyze the online customers by grouping them into similar online customers that might include similar opinions and experiences of the customers. That is, the methodology uses categorization and information extraction functions among text mining technologies, matched up with the concept of market segmentation. In particular, the methodology also uses cross-tabulations analysis function which is a kind of traditional statistics analysis functions to derive rigorous results of the analysis. In order to confirm the validity of the methodology, we actually analyzed online customer reviews related with tourism by using the methodology.

Online Hard Example Mining for Training One-Stage Object Detectors (단-단계 물체 탐지기 학습을 위한 고난도 예들의 온라인 마이닝)

  • Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.5
    • /
    • pp.195-204
    • /
    • 2018
  • In this paper, we propose both a new loss function and an online hard example mining scheme for improving the performance of single-stage object detectors which use deep convolutional neural networks. The proposed loss function and the online hard example mining scheme can not only overcome the problem of imbalance between the number of annotated objects and the number of background examples, but also improve the localization accuracy of each object. Therefore, the loss function and the mining scheme can provide intrinsically fast single-stage detectors with detection performance higher than or similar to that of two-stage detectors. In experiments conducted with the PASCAL VOC 2007 benchmark dataset, we show that the proposed loss function and the online hard example mining scheme can improve the performance of single-stage object detectors.

Text-Mining of Online Discourse to Characterize the Nature of Pain in Low Back Pain

  • Ryu, Young Uk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.55-62
    • /
    • 2019
  • PURPOSE: Text-mining has been shown to be useful for understanding the clinical characteristics and patients' concerns regarding a specific disease. Low back pain (LBP) is the most common disease in modern society and has a wide variety of causes and symptoms. On the other hand, it is difficult to understand the clinical characteristics and the needs as well as demands of patients with LBP because of the various clinical characteristics. This study examined online texts on LBP to determine of text-mining can help better understand general characteristics of LBP and its specific elements. METHODS: Online data from www.spine-health.com were used for text-mining. Keyword frequency analysis was performed first on the complete text of postings (full-text analysis). Only the sentences containing the highest frequency word, pain, were selected. Next, texts including the sentences were used to re-analyze the keyword frequency (pain-text analysis). RESULTS: Keyword frequency analysis showed that pain is of utmost concern. Full-text analysis was dominated by structural, pathological, and therapeutic words, whereas pain-text analysis was related mainly to the location and quality of the pain. CONCLUSION: The present study indicated that text-mining for a specific element (keyword) of a particular disease could enhance the understanding of the specific aspect of the disease. This suggests that a consideration of the text source is required when interpreting the results. Clinically, the present results suggest that clinicians pay more attention to the pain a patient is experiencing, and provide information based on medical knowledge.

Analysis of Consumer Value Structure in Vintage Clothing Consumption -Based on Text Mining and Means-End Chain Analysis- (빈티지 의류 소비에서의 소비자 가치구조 분석 -텍스트 마이닝 기법과 수단-목적 사슬 분석을 중심으로-)

  • Yujeong Won;Chanhee Kang;Yuri Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.4
    • /
    • pp.729-742
    • /
    • 2023
  • This two-part study explores the changes in the types of perceived value and consumption channels for vintage clothing and the relationship between the two variables. In Study 1, we used text mining with the keyword "fashion+vintage." Emotional value was the most frequently mentioned, and environmental value increased the most. We also revealed an increasing trend in online channels for vintage clothing consumption. In Study 2, we analyzed 30 interviews with consumers who had purchased vintage clothing through online channels. We identified 7 attributes and 20 goals for vintage consumption online and pinpointed three strong connections. First, consumers reported high levels of service satisfaction due to the usefulness of algorithms. Second, the authenticity and heritage information available through online and mobile channels were associated with consumers' perceptions of value related to financial benefits. Third, consumers sought to find rare products through online channels, leading to a strong influence on their sense of achievement. Overall, this study proposed ways to increase the value of vintage clothing perceived by consumers through consumption online.

A Methodology for Customer Core Requirement Analysis by Using Text Mining : Focused on Chinese Online Cosmetics Market (텍스트 마이닝을 활용한 사용자 핵심 요구사항 분석 방법론 : 중국 온라인 화장품 시장을 중심으로)

  • Shin, Yoon Sig;Baek, Dong Hyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.66-77
    • /
    • 2021
  • Companies widely use survey to identify customer requirements, but the survey has some problems. First of all, the response is passive due to pre-designed questionnaire by companies which are the surveyor. Second, the surveyor needs to have good preliminary knowledge to improve the quality of the survey. On the other hand, text mining is an excellent way to compensate for the limitations of surveys. Recently, the importance of online review is steadily grown, and the enormous amount of text data has increased as Internet usage higher. Also, a technique to extract high-quality information from text data called Text Mining is improving. However, previous studies tend to focus on improving the accuracy of individual analytics techniques. This study proposes the methodology by combining several text mining techniques and has mainly three contributions. Firstly, able to extract information from text data without a preliminary design of the surveyor. Secondly, no need for prior knowledge to extract information. Lastly, this method provides quantitative sentiment score that can be used in decision-making.

Improvement of recommendation system using attribute-based opinion mining of online customer reviews

  • Misun Lee;Hyunchul Ahn
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.12
    • /
    • pp.259-266
    • /
    • 2023
  • In this paper, we propose an algorithm that can improve the accuracy performance of collaborative filtering using attribute-based opinion mining (ABOM). For the experiment, a total of 1,227 online consumer review data about smartphone apps from domestic smartphone users were used for analysis. After morpheme analysis using the KKMA (Kkokkoma) analyzer and emotional word analysis using KOSAC, attribute extraction is performed using LDA topic modeling, and the topic modeling results for each weighted review are used to add up the ratings of collaborative filtering and the sentiment score. MAE, MAPE, and RMSE, which are statistical model performance evaluations that calculate the average accuracy error, were used. Through experiments, we predicted the accuracy of online customers' app ratings (APP_Score) by combining traditional collaborative filtering among the recommendation algorithms and the attribute-based opinion mining (ABOM) technique, which combines LDA attribute extraction and sentiment analysis. As a result of the analysis, it was found that the prediction accuracy of ratings using attribute-based opinion mining CF was better than that of ratings implementing traditional collaborative filtering.