• Title/Summary/Keyword: Online hotel ratings

Search Result 10, Processing Time 0.025 seconds

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.

Predicting Missing Ratings of Each Evaluation Criteria for Hotel by Analyzing User Reviews (사용자 리뷰 분석을 통한 호텔 평가 항목별 누락 평점 예측 방법론)

  • Lee, Donghoon;Boo, Hyunkyung;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.161-176
    • /
    • 2017
  • Recently, most of the users can easily get access to a variety of information sources about companies, products, and services through online channels. Therefore, the online user evaluations are becoming the most powerful tool to generate word of mouth. The user's evaluation is provided in two forms, quantitative rating and review text. The rating is then divided into an overall rating and a detailed rating according to various evaluation criteria. However, since it is a burden for the reviewer to complete all required ratings for each evaluation criteria, so most of the sites requested only mandatory inputs for overall rating and optional inputs for other evaluation criteria. In fact, many users input only the ratings for some of the evaluation criteria and the percentage of missed ratings for each criteria is about 40%. As these missed ratings are the missing values in each criteria, the simple average calculation by ignoring the average 40% of the missed ratings can sufficiently distort the actual phenomenon. Therefore, in this study, we propose a methodology to predict the rating for the missed values of each criteria by analyzing user's evaluation information included the overall rating and text review for each criteria. The experiments were conducted on 207,968 evaluations collected from the actual hotel evaluation site. As a result, it was confirmed that the prediction accuracy of the detailed criteria ratings by the proposed methodology was much higher than the existing average-based method.

Which is More Important in Useful Online Review? Heuristic-Systematic Model Perspective (유용한 온라인 리뷰에서 어느 것이 더 중요한가? 휴리스틱-체계적 모델 관점)

  • Chung, Hee Chung;Lee, Hyunae;Chung, Namho;Koo, Chulmo
    • Knowledge Management Research
    • /
    • v.19 no.4
    • /
    • pp.1-17
    • /
    • 2018
  • Hotel consumers tend to rely on online reviews to reduce the risk to hotel products when they book hotel rooms because hotel products are high-risk products due to their intangibility. However, the development of ICT has caused information load, and it is an important issue to be perceived as useful information to consumer because a large amount of information complicates the decision making process of consumers. Drawn from Heuristic-Systematic Model(HSM), the present study explored the role of heuristic and systematic cues composing an online review influencing consumers' perception of hotel online reviews. More specifically, this study identified reviewers' identity, level of the reviewer, review star ratings, and attached hotel photo as heuristic cue, while review length, cognitive level of review and negativity in review as systematic cues. The binary logistic regression was adopted for analysis. This study found that only systematic cues of online review were found to affect the usefulness of it. Moreover, we preceded further study examining the moderating effect of seasonality in the relationships between systematic cues and usefulness.

A study on cultural characteristics of foreign tourists visiting Korea based on text mining of online review (온라인 리뷰의 텍스트 마이닝에 기반한 한국방문 외국인 관광객의 문화적 특성 연구)

  • Yao, Ziyan;Kim, Eunmi;Hong, Taeho
    • The Journal of Information Systems
    • /
    • v.29 no.4
    • /
    • pp.171-191
    • /
    • 2020
  • Purpose The study aims to compare the online review writing behavior of users in China and the United States through text mining on online reviews' text content. In particular, existing studies have verified that there are differences in online reviews between different cultures. Therefore, the purpose of this study is to compare the differences between reviews written by Chinese and American tourists by analyzing text contents of online reviews based on cultural theory. Design/methodology/approach This study collected and analyzed online review data for hotels, targeting Chinese and US tourists who visited Korea. Then, we analyzed review data through text mining like sentiment analysis and topic modeling analysis method based on previous research analysis. Findings The results showed that Chinese tourists gave higher ratings and relatively less negative ratings than American tourists. And American tourists have more negative sentiments and emotions in writing online reviews than Chinese tourists. Also, through the analysis results using topic modeling, it was confirmed that Chinese tourists mentioned more topics about the hotel location, room, and price, while American tourists mentioned more topics about hotel service. American tourists also mention more topics about hotels than Chinese tourists, indicating that American tourists tend to provide more information through online reviews.

Moderate Effects of Managerial Response on Hotel Ratings of Japanese Tourists (일본인 관광객의 숙박 후기 평점에 대한 관리자 응답의 조절효과)

  • JANG, Juhyeok
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.7
    • /
    • pp.83-89
    • /
    • 2019
  • Purpose - It is a very important issue for the Korean tourism industry to increase tourism revenue by attracting foreign tourists. Although Japanese tourists have been an important part of the Korean tourism industry for a long time, the level of tourist satisfaction including accommodation has been at the worst compared to other foreign visitors, which strongly requires concrete solutions. Therefore, this study focuses on improving the satisfaction level of Japanese visitors in the use of accommodation, and find out the influence of the managerial response. Research design, data, and methodology - In this study, customer review and managerial response of hotels in Seoul were collected from "Rakuten Travel" which is the most representative online travel agency in Japan. As a result of collecting data from 2016 to 2018, 6,190 customer reviews and 1,241 managerial responses from 120 hotels were used for analysis. In addition, information on the properties of 120 hotels, such as the number of rooms, classification, types of hotel facilities, types of room facilities, accessibility and prices, were collected. To test the hypotheses, moderated multiple regression analysis was conducted with SPSS 22.0. Results - It was found that only 25 sites, 20.8% of the total 120 sites, were implementing managerial response and average response rate was 66.42% among them. As a result of examining the main effects of the hotel attributes on the ratings, accessibility and price are confirmed as effective variables. We also found that the response rate has a significant moderate effect in both the accessibility and price. In other words, there was a significant difference in the influence of accessibility and price on the ratings depending on the response rate. Also, it was confirmed that the response rate is not a pure moderator variable but a quasi moderator variable. Overall, the evidences partially supported the hypothesis. Conclusion - It was possible to provide important suggestions to the hotel managers who were concerned about managing tourist satisfaction with accessibility problems. It was found that the accessibility problem could be overcome by increasing the response rate. It was also confirmed that high ratings can be more effectively achieved for high priced hotels by increasing the response rate.

Multi-Topic Sentiment Analysis using LDA for Online Review (LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석 - TripAdvisor 사례를 중심으로 -)

  • Hong, Tae-Ho;Niu, Hanying;Ren, Gang;Park, Ji-Young
    • The Journal of Information Systems
    • /
    • v.27 no.1
    • /
    • pp.89-110
    • /
    • 2018
  • Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.

An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels (호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법)

  • Moon, Hyun Sil;Sung, David;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.21-41
    • /
    • 2019
  • Thanks to the rapid development of information technologies, the data available on Internet have grown rapidly. In this era of big data, many studies have attempted to offer insights and express the effects of data analysis. In the tourism and hospitality industry, many firms and studies in the era of big data have paid attention to online reviews on social media because of their large influence over customers. As tourism is an information-intensive industry, the effect of these information networks on social media platforms is more remarkable compared to any other types of media. However, there are some limitations to the improvements in service quality that can be made based on opinions on social media platforms. Users on social media platforms represent their opinions as text, images, and so on. Raw data sets from these reviews are unstructured. Moreover, these data sets are too big to extract new information and hidden knowledge by human competences. To use them for business intelligence and analytics applications, proper big data techniques like Natural Language Processing and data mining techniques are needed. This study suggests an analytical approach to directly yield insights from these reviews to improve the service quality of hotels. Our proposed approach consists of topic mining to extract topics contained in the reviews and the decision tree modeling to explain the relationship between topics and ratings. Topic mining refers to a method for finding a group of words from a collection of documents that represents a document. Among several topic mining methods, we adopted the Latent Dirichlet Allocation algorithm, which is considered as the most universal algorithm. However, LDA is not enough to find insights that can improve service quality because it cannot find the relationship between topics and ratings. To overcome this limitation, we also use the Classification and Regression Tree method, which is a kind of decision tree technique. Through the CART method, we can find what topics are related to positive or negative ratings of a hotel and visualize the results. Therefore, this study aims to investigate the representation of an analytical approach for the improvement of hotel service quality from unstructured review data sets. Through experiments for four hotels in Hong Kong, we can find the strengths and weaknesses of services for each hotel and suggest improvements to aid in customer satisfaction. Especially from positive reviews, we find what these hotels should maintain for service quality. For example, compared with the other hotels, a hotel has a good location and room condition which are extracted from positive reviews for it. In contrast, we also find what they should modify in their services from negative reviews. For example, a hotel should improve room condition related to soundproof. These results mean that our approach is useful in finding some insights for the service quality of hotels. That is, from the enormous size of review data, our approach can provide practical suggestions for hotel managers to improve their service quality. In the past, studies for improving service quality relied on surveys or interviews of customers. However, these methods are often costly and time consuming and the results may be biased by biased sampling or untrustworthy answers. The proposed approach directly obtains honest feedback from customers' online reviews and draws some insights through a type of big data analysis. So it will be a more useful tool to overcome the limitations of surveys or interviews. Moreover, our approach easily obtains the service quality information of other hotels or services in the tourism industry because it needs only open online reviews and ratings as input data. Furthermore, the performance of our approach will be better if other structured and unstructured data sources are added.

A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem (온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구)

  • Qinglong Li;Shibo Cui;Byunggyu Shin;Jaekyeong Kim
    • Information Systems Review
    • /
    • v.23 no.3
    • /
    • pp.51-75
    • /
    • 2021
  • Global e-commerce websites offer personalized recommendation services to gain sustainable competitiveness. Existing studies have offered personalized recommendation services using quantitative preferences such as ratings. However, offering personalized recommendation services using only quantitative data has raised the problem of decreasing recommendation performance. For example, a user gave a five-star rating but wrote a review that the user was unsatisfied with hotel service and cleanliness. In such cases, has problems where quantitative and qualitative preferences are inconsistent. Recently, a growing number of studies have considered review data simultaneously to improve the limitations of existing personalized recommendation service studies. Therefore, in this study, we identify review and rating mismatches and build a new user profile to offer personalized recommendation services. To this end, we use deep learning algorithms such as CNN, LSTM, CNN + LSTM, which have been widely used in sentiment analysis studies. And extract sentiment features from reviews and compare with quantitative preferences. To evaluate the performance of the proposed methodology in this study, we collect user preference information using real-world hotel data from the world's largest travel platform TripAdvisor. Experiments show that the proposed methodology in this study outperforms the existing other methodologies, using only existing quantitative preferences.

Classification of Service Attributes and Strategic Customer Service Management based on the Asymmetric and Non-linear Relationship between Service Attributes and Customer Satisfaction (서비스 속성과 고객만족과의 비대칭적, 비선형적 관계에 근거한 서비스 속성 분류와 전략적 고객서비스 경영)

  • Park, Jung-Young;Lee, Gye-Hee
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.5
    • /
    • pp.605-615
    • /
    • 2008
  • The principal objective of this study was to categorize service attributes on the basis of the asymmetric and non-linear relationship existing between service attributes and customer satisfaction. Researchers generally assume that service attribute performances and customer satisfaction are both symmetrical and linear. That is to say, improvements in attribute performance will inevitably result in increased customer satisfaction. However, this is not always the case. Certain attributes have been shown not to create satisfaction even when improved, and others do not create dissatisfaction even when their performance ratings become negative. Understanding this relationship is crucial not only to researchers, but also to service managers. Service managers can arrange their priorities with regard to which attributes must be improved or promoted first, in an environment of limited technical, financial, and human resources. Many studies into this asymmetric and non-linear relationship have recently been conducted, beginning with Herzberg's motivation-hygiene theory (1976) and the disconfirmation theory, which was eventually developed into Kano's model (1984). This study attempted to determine the impact level of service attributes on incidents of satisfaction or dissatisfaction. It used 30 service attributes generated by Park (2008) in the CIT research into family restaurants. The data were collected from 600 participants, 300 incidences of satisfaction and 300 incidents of dissatisfaction, via an online survey. The t-test was used to confirm the difference between the satisfaction group's and dissatisfaction group's attributes. 11 attributes were found to be significant at a level of p>0.05. This indicates that the 11 attributes exerted different impacts on satisfaction and dissatisfaction, which confirmed the asymmetric and non-linear relationship. 14 attributes were categorized into the core service, 1 attribute into the quality service, 7 attributes into the basic service, and 8 attributes into the neutral service. Strategic customer service management was recommended for the 'A' family restaurant as an example, on the basis of the asymmetric and non-linear relationship and the characteristics of the four service factors.

Cultural Backgrounds of Reviewers, Negative Emotions, and Review Helpulness: Based on Impression Management Theory (리뷰어의 문화적 배경, 부정적 감정표현, 그리고 리뷰유용성: 인상관리 이론을 중심으로)

  • Jungwon Lee;Ohsung Kim;Cheol Park
    • Information Systems Review
    • /
    • v.26 no.2
    • /
    • pp.59-81
    • /
    • 2024
  • Online consumer reviews provide a variety of information from the customer perspective in terms of satisfaction and dissatisfaction. Negative emotional expression is a potential antecedent of review usefulness, and can also influence potential consumers' attitudes and decisions. In addition, because national culture provides a perspective from which individuals view the world and act, it is highly likely that differences in negative emotional expression will occur depending on culture. This study explores the relationship between national culture and negative emotional expression based on impression management theory and ultimately analyzes the impact on review usefulness. For empirical analysis, 16,076 reviews of 140 hotels located in Seoul were collected and analyzed using the PLS-SEM method. As a result of the analysis, it was found that power distance and masculinity culture dimensions had a positive effect on reviewers' negative emotional expressions, while uncertainty avoidance and long-term orientation had a negative effect. In addition, negative emotional expression was analyzed to have a positive effect on review usefulness even when review ratings were controlled.