• 제목/요약/키워드: Online hotel ratings

검색결과 10건 처리시간 0.029초

The Impact of Online Reviews on Hotel Ratings through the Lens of Elaboration Likelihood Model: A Text Mining Approach

  • Qiannan Guo;Jinzhe Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권10호
    • /
    • pp.2609-2626
    • /
    • 2023
  • The hotel industry is an example of experiential services. As consumers cannot fully evaluate the online review content and quality of their services before booking, they must rely on several online reviews to reduce their perceived risks. However, individuals face information overload owing to the explosion of online reviews. Therefore, consumer cognitive fluency is an individual's subjective experience of the difficulty in processing information. Information complexity influences the receiver's attitude, behavior, and purchase decisions. Individuals who cannot process complex information rely on the peripheral route, whereas those who can process more information prefer the central route. This study further discusses the influence of the complexity of review information on hotel ratings using online attraction review data retrieved from TripAdvisor.com. This study conducts a two-level empirical analysis to explore the factors that affect review value. First, in the Peripheral Route model, we introduce a negative binomial regression model to examine the impact of intuitive and straightforward information on hotel ratings. In the Central Route model, we use a Tobit regression model with expert reviews as moderator variables to analyze the impact of complex information on hotel ratings. According to the analysis, five-star and budget hotels have different effects on hotel ratings. These findings have immediate implications for hotel managers in terms of better identifying potentially valuable reviews.

사용자 리뷰 분석을 통한 호텔 평가 항목별 누락 평점 예측 방법론 (Predicting Missing Ratings of Each Evaluation Criteria for Hotel by Analyzing User Reviews)

  • 이동훈;부현경;김남규
    • 한국IT서비스학회지
    • /
    • 제16권4호
    • /
    • pp.161-176
    • /
    • 2017
  • Recently, most of the users can easily get access to a variety of information sources about companies, products, and services through online channels. Therefore, the online user evaluations are becoming the most powerful tool to generate word of mouth. The user's evaluation is provided in two forms, quantitative rating and review text. The rating is then divided into an overall rating and a detailed rating according to various evaluation criteria. However, since it is a burden for the reviewer to complete all required ratings for each evaluation criteria, so most of the sites requested only mandatory inputs for overall rating and optional inputs for other evaluation criteria. In fact, many users input only the ratings for some of the evaluation criteria and the percentage of missed ratings for each criteria is about 40%. As these missed ratings are the missing values in each criteria, the simple average calculation by ignoring the average 40% of the missed ratings can sufficiently distort the actual phenomenon. Therefore, in this study, we propose a methodology to predict the rating for the missed values of each criteria by analyzing user's evaluation information included the overall rating and text review for each criteria. The experiments were conducted on 207,968 evaluations collected from the actual hotel evaluation site. As a result, it was confirmed that the prediction accuracy of the detailed criteria ratings by the proposed methodology was much higher than the existing average-based method.

유용한 온라인 리뷰에서 어느 것이 더 중요한가? 휴리스틱-체계적 모델 관점 (Which is More Important in Useful Online Review? Heuristic-Systematic Model Perspective)

  • 정희정;이현애;정남호;구철모
    • 지식경영연구
    • /
    • 제19권4호
    • /
    • pp.1-17
    • /
    • 2018
  • Hotel consumers tend to rely on online reviews to reduce the risk to hotel products when they book hotel rooms because hotel products are high-risk products due to their intangibility. However, the development of ICT has caused information load, and it is an important issue to be perceived as useful information to consumer because a large amount of information complicates the decision making process of consumers. Drawn from Heuristic-Systematic Model(HSM), the present study explored the role of heuristic and systematic cues composing an online review influencing consumers' perception of hotel online reviews. More specifically, this study identified reviewers' identity, level of the reviewer, review star ratings, and attached hotel photo as heuristic cue, while review length, cognitive level of review and negativity in review as systematic cues. The binary logistic regression was adopted for analysis. This study found that only systematic cues of online review were found to affect the usefulness of it. Moreover, we preceded further study examining the moderating effect of seasonality in the relationships between systematic cues and usefulness.

온라인 리뷰의 텍스트 마이닝에 기반한 한국방문 외국인 관광객의 문화적 특성 연구 (A study on cultural characteristics of foreign tourists visiting Korea based on text mining of online review)

  • 야오즈옌;김은미;홍태호
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제29권4호
    • /
    • pp.171-191
    • /
    • 2020
  • Purpose The study aims to compare the online review writing behavior of users in China and the United States through text mining on online reviews' text content. In particular, existing studies have verified that there are differences in online reviews between different cultures. Therefore, the purpose of this study is to compare the differences between reviews written by Chinese and American tourists by analyzing text contents of online reviews based on cultural theory. Design/methodology/approach This study collected and analyzed online review data for hotels, targeting Chinese and US tourists who visited Korea. Then, we analyzed review data through text mining like sentiment analysis and topic modeling analysis method based on previous research analysis. Findings The results showed that Chinese tourists gave higher ratings and relatively less negative ratings than American tourists. And American tourists have more negative sentiments and emotions in writing online reviews than Chinese tourists. Also, through the analysis results using topic modeling, it was confirmed that Chinese tourists mentioned more topics about the hotel location, room, and price, while American tourists mentioned more topics about hotel service. American tourists also mention more topics about hotels than Chinese tourists, indicating that American tourists tend to provide more information through online reviews.

일본인 관광객의 숙박 후기 평점에 대한 관리자 응답의 조절효과 (Moderate Effects of Managerial Response on Hotel Ratings of Japanese Tourists)

  • 장주혁
    • 산경연구논집
    • /
    • 제10권7호
    • /
    • pp.83-89
    • /
    • 2019
  • Purpose - It is a very important issue for the Korean tourism industry to increase tourism revenue by attracting foreign tourists. Although Japanese tourists have been an important part of the Korean tourism industry for a long time, the level of tourist satisfaction including accommodation has been at the worst compared to other foreign visitors, which strongly requires concrete solutions. Therefore, this study focuses on improving the satisfaction level of Japanese visitors in the use of accommodation, and find out the influence of the managerial response. Research design, data, and methodology - In this study, customer review and managerial response of hotels in Seoul were collected from "Rakuten Travel" which is the most representative online travel agency in Japan. As a result of collecting data from 2016 to 2018, 6,190 customer reviews and 1,241 managerial responses from 120 hotels were used for analysis. In addition, information on the properties of 120 hotels, such as the number of rooms, classification, types of hotel facilities, types of room facilities, accessibility and prices, were collected. To test the hypotheses, moderated multiple regression analysis was conducted with SPSS 22.0. Results - It was found that only 25 sites, 20.8% of the total 120 sites, were implementing managerial response and average response rate was 66.42% among them. As a result of examining the main effects of the hotel attributes on the ratings, accessibility and price are confirmed as effective variables. We also found that the response rate has a significant moderate effect in both the accessibility and price. In other words, there was a significant difference in the influence of accessibility and price on the ratings depending on the response rate. Also, it was confirmed that the response rate is not a pure moderator variable but a quasi moderator variable. Overall, the evidences partially supported the hypothesis. Conclusion - It was possible to provide important suggestions to the hotel managers who were concerned about managing tourist satisfaction with accessibility problems. It was found that the accessibility problem could be overcome by increasing the response rate. It was also confirmed that high ratings can be more effectively achieved for high priced hotels by increasing the response rate.

LDA를 이용한 온라인 리뷰의 다중 토픽별 감성분석 - TripAdvisor 사례를 중심으로 - (Multi-Topic Sentiment Analysis using LDA for Online Review)

  • 홍태호;니우한잉;임강;박지영
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제27권1호
    • /
    • pp.89-110
    • /
    • 2018
  • Purpose There is much information in customer reviews, but finding key information in many texts is not easy. Business decision makers need a model to solve this problem. In this study we propose a multi-topic sentiment analysis approach using Latent Dirichlet Allocation (LDA) for user-generated contents (UGC). Design/methodology/approach In this paper, we collected a total of 104,039 hotel reviews in seven of the world's top tourist destinations from TripAdvisor (www.tripadvisor.com) and extracted 30 topics related to the hotel from all customer reviews using the LDA model. Six major dimensions (value, cleanliness, rooms, service, location, and sleep quality) were selected from the 30 extracted topics. To analyze data, we employed R language. Findings This study contributes to propose a lexicon-based sentiment analysis approach for the keywords-embedded sentences related to the six dimensions within a review. The performance of the proposed model was evaluated by comparing the sentiment analysis results of each topic with the real attribute ratings provided by the platform. The results show its outperformance, with a high ratio of accuracy and recall. Through our proposed model, it is expected to analyze the customers' sentiments over different topics for those reviews with an absence of the detailed attribute ratings.

호텔 산업의 서비스 품질 향상을 위한 토픽 마이닝 기반 분석 방법 (An Analytical Approach Using Topic Mining for Improving the Service Quality of Hotels)

  • 문현실;성다윗;김재경
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.21-41
    • /
    • 2019
  • 정보 기술의 발전으로 온라인에서 활용 가능한 데이터의 양이 급속히 증대되고 있다. 이러한 빅데이터 시대에 많은 연구들이 통찰력을 발견하고 데이터의 효과를 입증하기 위해 노력하고 있다. 특히 관광 산업의 경우 정보에 민감한 사업으로 소셜 미디어의 영향력이 높고 소셜 미디어의 상품 후기에 소비자들이 영향을 많이 받아 많은 기업과 연구자들이 소셜 미디어를 분석하여 새로운 서비스 및 통찰력을 얻고자 시도하였다. 하지만 소셜 미디어의 후기는 텍스트로 이루어진 대표적인 비정형 데이터로 적절한 처리를 하지 않으면 분석에 활용할 수 없다. 또한 후기 데이터의 양이 방대함에 따라 사람이 직접 분석하기도 어려운 실정이다. 따라서, 본 연구에서는 이러한 소셜미디어 상의 온라인 후기로부터 직접 호텔의 서비스 품질 향상을 위한 통찰력을 추출할 수 있는 분석 방법을 제시하고자 한다. 이를 위해 본 연구에서는 먼저 후기 데이터에 포함되어 있는 주제어를 추출하는 토픽 마이닝 기법을 적용하였다. 토픽 마이닝은 대용량의 문서 집합으로부터 문서를 대표하는 단어 집합을 추출하는 기법을 의미하며 본 연구에서는 다양한 연구에서 활용되고 있는 LDA모형을 사용하여 토픽 마이닝을 수행하였다. 하지만, 토픽 마이닝 자체만으로는 주제어와 평점 사이의 관계를 도출할 수 없어 서비스 품질 향상을 위한 통찰력을 발견하기 어렵다. 그에 따라 본 연구에서는 토픽 마이닝의 결과값을 기반으로 의사결정나무 모형을 사용하여 주제어와 평점 사이의 관계를 도출하였다. 이러한 방법론의 유용성을 평가하기 위해 홍콩에 있는 4개 호텔의 온라인 후기를 수집하고 제안한 방법론의 분석 결과를 해석하는 실험을 진행하였다. 실험 결과 긍정 후기를 통해 각 호텔이 유지해야할 서비스 영역을 발견할 수 있었으며 부정 후기를 통해 개선해야할 서비스 영역을 도출할 수 있었다. 따라서, 본 연구에서 제안한 방법론을 사용하여 방대한 양의 후기 데이터로부터 서비스 개선 및 유지 영역을 발견할 수 있으리라 기대된다.

온라인 호텔 리뷰와 평점 불일치 문제 해결을 위한 딥러닝 기반 개인화 추천 서비스 연구 (A Study of Deep Learning-based Personalized Recommendation Service for Solving Online Hotel Review and Rating Mismatch Problem)

  • 이청용;최사박;신병규;김재경
    • 경영정보학연구
    • /
    • 제23권3호
    • /
    • pp.51-75
    • /
    • 2021
  • 세계적인 전자상거래 기업들은 지속 가능한 경쟁력을 확보하기 위해 사용자 맞춤형 추천 서비스를 제공하고 있다. 기존 관련 연구에서는 주로 평점, 구매 여부 등 정량적 선호도 정보를 사용하여 개인화 추천 서비스를 제공하였다. 하지만 이와 같은 정량적 선호도 정보를 사용하여 개인화 추천 서비스를 제공하면 추천 성능이 저하될 수 있다는 문제점이 제기되고 있다. 호텔을 이용한 사용자가 호텔 서비스, 청결 상태 등에 대하여 만족하지 못한다고 리뷰를 작성하였으나 선호도 평점 5점을 부여했을 때 정량적 선호도(평점)와 정성적 선호도(리뷰)가 불일치한 문제가 발생할 수 있다. 따라서 본 연구에서는 정량적 선호도 정보와 정성적 선호도 정보가 일치하는지를 확인하고 이를 바탕으로 선호도 정보가 일치하는 사용자를 바탕으로 새로운 프로파일을 구축하여 개인화 추천 서비스를 제공하고자 한다. 리뷰에서 정성적 선호도를 추출하기 위해 자연어 처리 관련 연구에서 널리 사용되고 있는 CNN, LSTM, CNN + LSTM 등 딥러닝 기법을 사용하여 감성분석 모델을 구축하였다. 이를 통해 사용자가 작성한 리뷰에서 정성적 선호도 정보를 정교하게 추출하여 정량적 선호도 정보와 비교하였다. 본 연구에서 제안한 추천 방법론의 성능을 평가하기 위해 세계 최대 여행 플랫폼 TripAdvisor에서 실제 호텔을 이용한 사용자 선호도 정보를 수집하여 사용하였다. 실험 결과 본 연구에서 제안한 추천 방법론이 기존의 정량적 선호도만을 고려하는 추천 방법론보다 우수한 추천 성능을 나타냄을 확인할 수 있었다.

서비스 속성과 고객만족과의 비대칭적, 비선형적 관계에 근거한 서비스 속성 분류와 전략적 고객서비스 경영 (Classification of Service Attributes and Strategic Customer Service Management based on the Asymmetric and Non-linear Relationship between Service Attributes and Customer Satisfaction)

  • 박정영;이계희
    • 한국식생활문화학회지
    • /
    • 제23권5호
    • /
    • pp.605-615
    • /
    • 2008
  • The principal objective of this study was to categorize service attributes on the basis of the asymmetric and non-linear relationship existing between service attributes and customer satisfaction. Researchers generally assume that service attribute performances and customer satisfaction are both symmetrical and linear. That is to say, improvements in attribute performance will inevitably result in increased customer satisfaction. However, this is not always the case. Certain attributes have been shown not to create satisfaction even when improved, and others do not create dissatisfaction even when their performance ratings become negative. Understanding this relationship is crucial not only to researchers, but also to service managers. Service managers can arrange their priorities with regard to which attributes must be improved or promoted first, in an environment of limited technical, financial, and human resources. Many studies into this asymmetric and non-linear relationship have recently been conducted, beginning with Herzberg's motivation-hygiene theory (1976) and the disconfirmation theory, which was eventually developed into Kano's model (1984). This study attempted to determine the impact level of service attributes on incidents of satisfaction or dissatisfaction. It used 30 service attributes generated by Park (2008) in the CIT research into family restaurants. The data were collected from 600 participants, 300 incidences of satisfaction and 300 incidents of dissatisfaction, via an online survey. The t-test was used to confirm the difference between the satisfaction group's and dissatisfaction group's attributes. 11 attributes were found to be significant at a level of p>0.05. This indicates that the 11 attributes exerted different impacts on satisfaction and dissatisfaction, which confirmed the asymmetric and non-linear relationship. 14 attributes were categorized into the core service, 1 attribute into the quality service, 7 attributes into the basic service, and 8 attributes into the neutral service. Strategic customer service management was recommended for the 'A' family restaurant as an example, on the basis of the asymmetric and non-linear relationship and the characteristics of the four service factors.

리뷰어의 문화적 배경, 부정적 감정표현, 그리고 리뷰유용성: 인상관리 이론을 중심으로 (Cultural Backgrounds of Reviewers, Negative Emotions, and Review Helpulness: Based on Impression Management Theory)

  • 이중원;김오성;박철
    • 경영정보학연구
    • /
    • 제26권2호
    • /
    • pp.59-81
    • /
    • 2024
  • 온라인 소비자 리뷰는 만족과 불만족 측면에서 고객 측면의 다양한 정보를 제공한다. 부정적 감정표현은 리뷰 유용성의 잠재적 선행요인이면서, 동시에 잠재 소비자의 태도와 의사결정에도 영향을 미칠 수 있다. 또한, 국가문화는 개인이 세상을 바라보고 행동하는 관점을 제공하기 때문에, 부정적 감정표현은 문화에 따라 차이가 발생할 가능성이 크다. 본 연구는 국가문화와 부정적 감정표현 간의 관계를 인상관리 이론을 기반으로 탐색하고 궁극적으로 리뷰 유용성에 미치는 영향을 분석하고자 한다. 실증분석을 위해 서울에 위치한 140개 호텔의 리뷰 16,076개를 수집하여 PLS-SEM 방법으로 분석하였다. 분석결과, 권력거리와 남성성 문화 차원은 리뷰어의 부정적 감정표현에 긍정적인 영향을 미쳤으며, 불확실성회피 및 장기지향은 부정적인 영향을 미치는 것으로 분석되었다. 또한, 부정적 감정표현은 리뷰 평점을 통제한 상황에서도 리뷰 유용성에 긍정적인 영향을 미치는 것으로 분석되었다.